Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 67(6): e0164522, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37162367

RESUMO

Candida auris is an emerging, multidrug-resistant fungal pathogen that causes refractory colonization and life-threatening, invasive nosocomial infections. The high proportion of C. auris isolates that display antifungal resistance severely limits treatment options. Combination therapies provide a possible strategy by which to enhance antifungal efficacy and prevent the emergence of further resistance. Therefore, we examined drug combinations using antifungals that are already in clinical use or are undergoing clinical trials. Using checkerboard assays, we screened combinations of 5-flucytosine and manogepix (the active form of the novel antifungal drug fosmanogepix) with anidulafungin, amphotericin B, or voriconazole against drug resistant and susceptible C. auris isolates from clades I and III. Fractional inhibitory concentration indices (FICI values) of 0.28 to 0.75 and 0.36 to 1.02 were observed for combinations of anidulafungin with manogepix or 5-flucytosine, respectively, indicating synergistic activity. The high potency of these anidulafungin combinations was confirmed using live-cell microfluidics-assisted imaging of the fungal growth. In summary, combinations of anidulafungin with manogepix or 5-flucytosine show great potential against both resistant and susceptible C. auris isolates.


Assuntos
Antifúngicos , Flucitosina , Antifúngicos/farmacologia , Anidulafungina/farmacologia , Flucitosina/farmacologia , Candida auris , Candida , Testes de Sensibilidade Microbiana
2.
Fungal Genet Biol ; 151: 103470, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32979514

RESUMO

Calcium signalling plays a fundamental role in fungal intracellular signalling. Previous approaches (fluorescent dyes, bioluminescent aequorin, genetically encoded cameleon probes) with imaging rapid subcellular changes in cytosolic free calcium ([Ca2+]c) in fungal cells have produced inconsistent results. Recent data obtained with new fluorescent, genetically encoded GCaMP probes, that are very bright, have resolved this problem. Here, exposing conidia or conidial germlings to high external Ca2+, as an example of an external stressor, induced very dramatic, rapid and dynamic [Ca2+]c changes with localized [Ca2+]c transients and waves. Considerable heterogeneity in the timing of Ca2+ responses of different spores/germlings within the cell population was observed.


Assuntos
Aspergillus fumigatus/metabolismo , Cálcio/metabolismo , Corantes Fluorescentes/metabolismo , Genes Reporter , Sinalização do Cálcio , Calmodulina/genética , Calmodulina/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Sondas Moleculares , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Esporos Fúngicos/metabolismo
3.
Med Mycol ; 59(1): 7-13, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-32944768

RESUMO

The origin of isolates routinely used by the community of Aspergillus fumigatus researchers is periodically a matter of intense discussion at our centre, as the construction of recombinant isolates have sometimes followed convoluted routes, the documentation describing their lineages is fragmented, and the nomenclature is confusing. As an aide memoir, not least for our own benefit, we submit the following account and tabulated list of strains (Table 1) in an effort to collate all of the relevant information in a single, easily accessible document. To maximise the accuracy of this record we have consulted widely amongst the community of Medical Mycologists using these strains. All the strains described are currently available from one of these organisations, namely the Fungal Genetics Stock Centre (FGSC), FungiDB, Ensembl Fungi and The National Collection of Pathogenic Fungi (NCPF) at Public Health England. Display items from this manuscript are also featured on FungiDB. LAY ABSTRACT: We present a concise overview on the definition, origin and unique genetic makeup of the Aspergillus fumigatus isolates routinely in use by the fungal research community, to aid researchers to describe past and new strains and the experimental differences observed more accurately.


Assuntos
Aspergillus fumigatus/classificação , Aspergillus fumigatus/genética , Evolução Biológica , Genótipo , Filogenia , Variação Genética , Humanos
4.
Mol Microbiol ; 106(6): 861-875, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28922497

RESUMO

Functional coupling of calcium- and alkaline responsive signalling occurs in multiple fungi to afford efficient cation homeostasis. Host microenvironments exert alkaline stress and potentially toxic concentrations of Ca2+ , such that highly conserved regulators of both calcium- (Crz) and pH- (PacC/Rim101) responsive signalling are crucial for fungal pathogenicity. Drugs targeting calcineurin are potent antifungal agents but also perturb human immunity thereby negating their use as anti-infectives, abrogation of alkaline signalling has, therefore, been postulated as an adjunctive antifungal strategy. We examined the interdependency of pH- and calcium-mediated signalling in Aspergillus fumigatus and found that calcium chelation severely impedes hyphal growth indicating a critical requirement for this ion independently of ambient pH. Transcriptomic responses to alkaline pH or calcium excess exhibited minimal similarity. Mutants lacking calcineurin, or its client CrzA, displayed normal alkaline tolerance and nuclear translocation of CrzA was unaffected by ambient pH. Expression of a highly conserved, alkaline-regulated, sodium ATPase was tolerant of genetic or chemical perturbations of calcium-mediated signalling, but abolished in null mutants of the pH-responsive transcription factor PacC, and PacC proteolytic processing occurred normally during calcium excess. Taken together our data demonstrate that in A. fumigatus the regulatory hierarchy governing alkaline tolerance circumvents calcineurin signalling.


Assuntos
Aspergillus fumigatus/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Calcineurina/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Concentração de Íons de Hidrogênio , Mutação com Perda de Função , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-29610197

RESUMO

The antifungal drug 5-flucytosine (5FC), a derivative of the nucleobase cytosine, is licensed for the treatment of fungal diseases; however, it is rarely used as a monotherapeutic to treat Aspergillus infection. Despite being potent against other fungal pathogens, 5FC has limited activity against Aspergillus fumigatus when standard in vitro assays are used to determine susceptibility. However, in modified in vitro assays where the pH is set to pH 5, the activity of 5FC increases significantly. Here we provide evidence that fcyB, a gene that encodes a purine-cytosine permease orthologous to known 5FC importers, is downregulated at pH 7 and is the primary factor responsible for the low efficacy of 5FC at pH 7. We also uncover two transcriptional regulators that are responsible for the repression of fcyB and, consequently, mediators of 5FC resistance, the CCAAT binding complex (CBC) and the pH regulatory protein PacC. We propose that the activity of 5FC might be enhanced by the perturbation of factors that repress fcyB expression, such as PacC or other components of the pH-sensing machinery.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Flucitosina/farmacologia , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/metabolismo , Aspergillus fumigatus/metabolismo , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Fatores de Transcrição/genética
6.
Mol Microbiol ; 98(6): 1051-72, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26303777

RESUMO

The Aspergillus nidulans PacC transcription factor mediates gene regulation in response to alkaline ambient pH which, signalled by the Pal pathway, results in the processing of PacC(72) to PacC(27) via PacC(53). Here we investigate two levels at which the pH regulatory system is transcriptionally moderated by pH and identify and characterise a new component of the pH regulatory machinery, PacX. Transcript level analysis and overexpression studies demonstrate that repression of acid-expressed palF, specifying the Pal pathway arrestin, probably by PacC(27) and/or PacC(53), prevents an escalating alkaline pH response. Transcript analyses using a reporter and constitutively expressed pacC trans-alleles show that pacC preferential alkaline-expression results from derepression by depletion of the acid-prevalent PacC(72) form. We additionally show that pacC repression requires PacX. pacX mutations suppress PacC processing recalcitrant mutations, in part, through derepressed PacC levels resulting in traces of PacC(27) formed by pH-independent proteolysis. pacX was cloned by impala transposon mutagenesis. PacX, with homologues within the Leotiomyceta, has an unusual structure with an amino-terminal coiled-coil and a carboxy-terminal zinc binuclear cluster. pacX mutations indicate the importance of these regions. One mutation, an unprecedented finding in A. nidulans genetics, resulted from an insertion of an endogenous Fot1-like transposon.


Assuntos
Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Dedos de Zinco , Sequência de Aminoácidos , Aspergillus nidulans/genética , Sítios de Ligação , Elementos de DNA Transponíveis , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Concentração de Íons de Hidrogênio , Mutagênese , Mutação , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Dedos de Zinco/genética
7.
PLoS Pathog ; 10(10): e1004413, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25329394

RESUMO

Destruction of the pulmonary epithelium is a major feature of lung diseases caused by the mould pathogen Aspergillus fumigatus. Although it is widely postulated that tissue invasion is governed by fungal proteases, A. fumigatus mutants lacking individual or multiple enzymes remain fully invasive, suggesting a concomitant requirement for other pathogenic activities during host invasion. In this study we discovered, and exploited, a novel, tissue non-invasive, phenotype in A. fumigatus mutants lacking the pH-responsive transcription factor PacC. Our study revealed a novel mode of epithelial entry, occurring in a cell wall-dependent manner prior to protease production, and via the Dectin-1 ß-glucan receptor. ΔpacC mutants are defective in both contact-mediated epithelial entry and protease expression, and significantly attenuated for pathogenicity in leukopenic mice. We combined murine infection modelling, in vivo transcriptomics, and in vitro infections of human alveolar epithelia, to delineate two major, and sequentially acting, PacC-dependent processes impacting epithelial integrity in vitro and tissue invasion in the whole animal. We demonstrate that A. fumigatus spores and germlings are internalised by epithelial cells in a contact-, actin-, cell wall- and Dectin-1 dependent manner and ΔpacC mutants, which aberrantly remodel the cell wall during germinative growth, are unable to gain entry into epithelial cells, both in vitro and in vivo. We further show that PacC acts as a global transcriptional regulator of secreted molecules during growth in the leukopenic mammalian lung, and profile the full cohort of secreted gene products expressed during invasive infection. Our study reveals a combinatorial mode of tissue entry dependent upon sequential, and mechanistically distinct, perturbations of the pulmonary epithelium and demonstrates, for the first time a protective role for Dectin-1 blockade in epithelial defences. Infecting ΔpacC mutants are hypersensitive to cell wall-active antifungal agents highlighting the value of PacC signalling as a target for antifungal therapy.


Assuntos
Aspergillus fumigatus/metabolismo , Células Epiteliais/microbiologia , Proteínas Fúngicas/metabolismo , Aspergilose Pulmonar/microbiologia , Fatores de Transcrição/metabolismo , Animais , Concentração de Íons de Hidrogênio , Camundongos
8.
PLoS Pathog ; 8(10): e1002851, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23055919

RESUMO

Molecular genetic approaches typically detect recombination in microbes regardless of assumed asexuality. However, genetic data have shown the AIDS-associated pathogen Penicillium marneffei to have extensive spatial genetic structure at local and regional scales, and although there has been some genetic evidence that a sexual cycle is possible, this haploid fungus is thought to be genetically, as well as morphologically, asexual in nature because of its highly clonal population structure. Here we use comparative genomics, experimental mixed-genotype infections, and population genetic data to elucidate the role of recombination in natural populations of P. marneffei. Genome wide comparisons reveal that all the genes required for meiosis are present in P. marneffei, mating type genes are arranged in a similar manner to that found in other heterothallic fungi, and there is evidence of a putatively meiosis-specific mutational process. Experiments suggest that recombination between isolates of compatible mating types may occur during mammal infection. Population genetic data from 34 isolates from bamboo rats in India, Thailand and Vietnam, and 273 isolates from humans in China, India, Thailand, and Vietnam show that recombination is most likely to occur across spatially and genetically limited distances in natural populations resulting in highly clonal population structure yet sexually reproducing populations. Predicted distributions of three different spatial genetic clusters within P. marneffei overlap with three different bamboo rat host distributions suggesting that recombination within hosts may act to maintain population barriers within P. marneffei.


Assuntos
Genes Fúngicos Tipo Acasalamento , Micoses/microbiologia , Penicillium/genética , Penicillium/fisiologia , Reprodução Assexuada/genética , Infecções Oportunistas Relacionadas com a AIDS/microbiologia , Animais , Sudeste Asiático , Hibridização Genômica Comparativa , Variação Genética , Genótipo , Interações Hospedeiro-Patógeno , Desequilíbrio de Ligação , Masculino , Meiose/genética , Camundongos , Muridae/microbiologia , Micoses/veterinária , Penicillium/isolamento & purificação , Recombinação Genética , Doenças dos Roedores/microbiologia
9.
iScience ; 27(6): 109939, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38846001

RESUMO

Hundreds of spores of Aspergillus fumigatus (Af) are inhaled daily by human beings, representing a constant, possibly fatal, threat to respiratory health. The small size of Af spores suggests that interactions with alveolar epithelial cells (AECs) are frequent; thus, we hypothesized that spore uptake by AECs is important for driving fungal killing and susceptibility to Aspergillus-related disease. Using single-cell approaches to measure spore uptake and its outcomes in vivo, we demonstrate that Af spores are internalized and killed by AECs during whole-animal infection. Moreover, comparative analysis of primary human AECs from healthy and chronic obstructive pulmonary disease (COPD) donors revealed significant alterations in the uptake and killing of spores in COPD-derived AECs. We conclude that AECs contribute to the killing of Af spores and that dysregulation of curative AEC responses in COPD may represent a driver of Aspergillus-related diseases.

10.
Nat Rev Microbiol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918447

RESUMO

Human fungal infections are a historically neglected area of disease research, yet they cause more than 1.5 million deaths every year. Our understanding of the pathophysiology of these infections has increased considerably over the past decade, through major insights into both the host and pathogen factors that contribute to the phenotype and severity of these diseases. Recent studies are revealing multiple mechanisms by which fungi modify and manipulate the host, escape immune surveillance and generate complex comorbidities. Although the emergence of fungal strains that are less susceptible to antifungal drugs or that rapidly evolve drug resistance is posing new threats, greater understanding of immune mechanisms and host susceptibility factors is beginning to offer novel immunotherapeutic options for the future. In this Review, we provide a broad and comprehensive overview of the pathobiology of human fungal infections, focusing specifically on pathogens that can cause invasive life-threatening infections, highlighting recent discoveries from the pathogen, host and clinical perspectives. We conclude by discussing key future challenges including antifungal drug resistance, the emergence of new pathogens and new developments in modern medicine that are promoting susceptibility to infection.

11.
Curr Clin Microbiol Rep ; 10(3): 120-130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37577059

RESUMO

Purpose of Review: For human fungal pathogens, sensory perception of extracellular pH is essential for colonisation of mammalian tissues and immune evasion. The molecular complexes that perceive and transmit the fungal pH signal are membrane-proximal and essential for virulence and are therefore of interest as novel antifungal drug targets. Intriguingly, the sensory machinery has evolved divergently in different fungal pathogens, yet spatial co-ordination of cellular components is conserved. Recent Findings: The recent discovery of a novel pH sensor in the basidiomycete pathogen Cryptococcus neformans highlights that, although the molecular conservation of fungal pH sensors is evolutionarily restricted, their subcellular localisation and coupling to essential components of the cellular ESCRT machinery are consistent features of the cellular pH sensing and adaptation mechanism. In both basidiomycetes and ascomycetes, the lipid composition of the plasma membrane to which pH sensing complexes are localised appears to have pivotal functional importance. Endocytosis of pH-sensing complexes occurs in multiple fungal species, but its relevance for signal transduction appears not to be universal. Summary: Our overview of current understanding highlights conserved and divergent mechanisms of the pH sensing machinery in model and pathogenic fungal species, as well as important unanswered questions that must be addressed to inform the future study of such sensing mechanisms and to devise therapeutic strategies for manipulating them.

12.
Mol Microbiol ; 82(4): 917-35, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22023286

RESUMO

Moulds are characterized by their saprophytic lifestyle that is based on osmotrophy. Among them, Aspergillus fumigatus has emerged as the leading cause of fungal infections in the presence of an underlying immunodeficiency. To assess the role of its nutritional versatility for virulence, transcriptional profiling studies in the presence of varying sources of nitrogen were carried out and revealed an extensive reprogramming of the fungal transcriptome when shifting to a proteinaceous growth substrate. Transcripts encoding metabolic activities were predominantly upregulated, as were proteinases and transport activities. To probe whether fundamental aspects of its osmotrophic lifestyle, that is, extracellular proteolysis and uptake of oligopeptides, are required for A. fumigatus pathogenicity, serial gene replacements were carried out, which eventually yielded an octuple deletion mutant ablated for the opt gene family. This strain displayed no growth defect on various substrates, but supplementary reduction of extracellular proteolytic activity by additional deletion of the prtT gene revealed a synthetic phenotype on porcine lung tissue agar. Virulence studies in a murine model of pulmonary aspergillosis did not disclose any attenuation in virulence of these deletants. Our data emphasize a high degree of redundancy encoded by the A. fumigatus genome that secures nutrient supply for growth and, therefore, virulence.


Assuntos
Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus fumigatus/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Oligopeptídeos/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Aspergilose/microbiologia , Aspergilose/patologia , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/patogenicidade , Meios de Cultura/química , Modelos Animais de Doenças , Deleção de Genes , Perfilação da Expressão Gênica , Camundongos , Nitrogênio/metabolismo , Transporte Proteico , Proteólise , Virulência
14.
Mycopathologia ; 174(4): 323-6, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22610906

RESUMO

A collection of clinical and environmental isolates of the opportunistic human pathogen, Aspergillus fumigatus, were screened for the presence of mycoviruses and 6.6 % of 366 isolates contained dsRNA segments ranging in size from ~1.0 to 4.0 kbp. The dsRNAs were categorised into three different groups comprising bipartite dsRNAs, quadripartite dsRNAs, representative isolates of which have both been sequenced, and an uncharacterised mycovirus, whose genome apparently consists of four dsRNAs 1-2.5 kbp in size. Here, we describe dsRNA incidence in the A. fumigatus isolates examined, their provenance and also note that on occasion individual isolates were infected with two groups of different dsRNAs.


Assuntos
Aspergilose/microbiologia , Aspergillus fumigatus/virologia , Vírus de RNA/isolamento & purificação , Microbiologia Ambiental , Genoma Viral , Humanos , Vírus de RNA/classificação , Vírus de RNA/genética , RNA de Cadeia Dupla/genética , RNA Viral/genética
15.
Nat Rev Microbiol ; 20(9): 557-571, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35352028

RESUMO

Invasive fungal infections pose an important threat to public health and are an under-recognized component of antimicrobial resistance, an emerging crisis worldwide. Across a period of profound global environmental change and expanding at-risk populations, human-infecting pathogenic fungi are evolving resistance to all licensed systemic antifungal drugs. In this Review, we highlight the main mechanisms of antifungal resistance and explore the similarities and differences between bacterial and fungal resistance to antimicrobial control. We discuss the research and innovation topics that are needed for risk reduction strategies aimed at minimizing the emergence of resistance in pathogenic fungi. These topics include links between the environment and One Health, surveillance, diagnostics, routes of transmission, novel therapeutics and methods to mitigate hotspots for fungal adaptation. We emphasize the global efforts required to steward our existing antifungal armamentarium, and to direct the research and development of future therapies and interventions.


Assuntos
Antifúngicos , Farmacorresistência Fúngica , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Fungos , Humanos
16.
Infect Immun ; 79(10): 3978-92, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21746855

RESUMO

Nonribosomal peptide synthesis (NRPS) is a documented virulence factor for the opportunistic pathogen Aspergillus fumigatus and other fungi. Secreted or intracellularly located NRP products include the toxic molecule gliotoxin and the iron-chelating siderophores triacetylfusarinine C and ferricrocin. No structural or immunologically relevant NRP products have been identified in the organism. We investigated the function of the largest gene in A. fumigatus, which encodes the NRP synthetase Pes3 (AFUA_5G12730), by targeted gene deletion and extensive phenotypic analysis. It was observed that in contrast to other NRP synthetases, deletion of pes3 significantly increases the virulence of A. fumigatus, whereby the pes3 deletion strain (A. fumigatus Δpes3) exhibited heightened virulence (increased killing) in invertebrate (P < 0.001) and increased fungal burden (P = 0.008) in a corticosteroid model of murine pulmonary aspergillosis. Complementation restored the wild-type phenotype in the invertebrate model. Deletion of pes3 also resulted in increased susceptibility to the antifungal, voriconazole (P < 0.01), shorter germlings, and significantly reduced surface ß-glucan (P = 0.0325). Extensive metabolite profiling revealed that Pes3 does not produce a secreted or intracellularly stored NRP in A. fumigatus. Macrophage infections and histological analysis of infected murine tissue indicate that Δpes3 heightened virulence appears to be mediated by aberrant innate immune recognition of the fungus. Proteome alterations in A. fumigatus Δpes3 strongly suggest impaired germination capacity. Uniquely, our data strongly indicate a structural role for the Pes3-encoded NRP, a finding that appears to be novel for an NRP synthetase.


Assuntos
Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/patogenicidade , Deleção de Genes , Mariposas/microbiologia , Peptídeo Sintases/genética , Aspergilose Pulmonar/microbiologia , Animais , Animais não Endogâmicos , Antifúngicos/farmacologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Linhagem Celular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Macrófagos/microbiologia , Camundongos , Peptídeo Sintases/metabolismo , Fenótipo , Pirimidinas/farmacologia , Triazóis/farmacologia , Virulência , Voriconazol
17.
Fungal Genet Biol ; 48(11): 1071-5, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21840413

RESUMO

Some isolates of the opportunistic human pathogenic fungus Aspergillus fumigatus are known to be infected with mycoviruses. The dsRNA genomes of two of these mycoviruses, which include a chrysovirus and a partitivirus, have been completely sequenced and an RT-PCR assay for the viruses has been developed. Through curing virus-infected A. fumigatus isolates by cycloheximide treatment and transfecting virus-free isolates with purified virus, as checked by RT-PCR, isogenic virus-free and virus-infected lines of the fungus were generated whose phenotypes and growth have been directly compared. Mycovirus infection of A. fumigatus with either the chrysovirus or the partitivirus resulted in significant aberrant phenotypic alterations and attenuation of growth of the fungus but had no effect on susceptibility to common antifungals. Chrysovirus infection of A. fumigatus caused no significant alterations to murine pathogenicity.


Assuntos
Aspergilose/microbiologia , Aspergilose/patologia , Aspergillus fumigatus/patogenicidade , Aspergillus fumigatus/virologia , Vírus de RNA/crescimento & desenvolvimento , Animais , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Pulmão/microbiologia , Camundongos , Vírus de RNA/genética , Virulência
18.
Med Mycol ; 48(3): 506-10, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20370364

RESUMO

The pathogenicity of six mutants of Aspergillus fumigatus that had been previously characterized in mice was assessed in Toll-deficient Drosophila melanogaster flies. Four out of six mutants of A. fumigatus, which displayed attenuated virulence in mice due to defects in siderophore biosynthesis (DeltasidA, DeltasidD), PABA metabolism (H515), and starvation stress response (DeltacpcA), also had attenuated virulence in the fly model. In addition, similarly to previous findings in the mouse model, DeltasidG mutant that is defective in extracellular siderophore biosynthesis retained full virulence in Toll-deficient flies. Overall, our studies reveal a high level of concordance between fly and murine models of invasive aspergillosis.


Assuntos
Aspergillus fumigatus/patogenicidade , Proteínas de Drosophila/deficiência , Drosophila melanogaster/genética , Drosophila melanogaster/microbiologia , Proteínas Fúngicas/genética , Receptores Toll-Like/deficiência , Fatores de Virulência/genética , Animais , Aspergillus fumigatus/genética , Modelos Animais de Doenças , Camundongos , Virulência
19.
Infect Immun ; 77(9): 4041-50, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19564390

RESUMO

Virulence of the fungal pathogen Aspergillus fumigatus is in part based on the saprophytic lifestyle that this mold has evolved. A crucial function for saprophytism resides in secreted proteases that allow assimilation of proteinaceous substrates. The impact of extracellular proteolytic activities on the pathogenesis of aspergillosis, however, remains controversial. In order to address this issue, characterization of a conserved regulatory factor, PrtT, that acts on expression of secreted proteases was pursued. Expression of PrtT appears to be regulated posttranscriptionally, and the existence of an mRNA leader sequence implies translational control via eIF2alpha kinase signaling. Phenotypic classification of a prtTDelta deletion mutant revealed that expression of several major extracellular proteases is PrtT dependent, resulting in the inability to utilize protein as a nutritional source. Certain genes encoding secreted proteases are not regulated by PrtT. Most strikingly, the deletant strain is not attenuated in virulence when tested in a leukopenic mouse model, which makes a strong case for reconsidering any impact of secreted proteases in pulmonary aspergillosis.


Assuntos
Aspergillus fumigatus/patogenicidade , Proteínas Fúngicas/fisiologia , Peptídeo Hidrolases/metabolismo , Fatores de Transcrição/fisiologia , Sequência de Aminoácidos , Animais , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/genética , Células Cultivadas , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Masculino , Camundongos , Dados de Sequência Molecular , Fatores de Transcrição/química , Virulência
20.
FEMS Microbiol Rev ; 43(2): 145-161, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657899

RESUMO

Intracellular occupancy of the respiratory epithelium is a useful pathogenic strategy facilitating microbial replication and evasion of professional phagocytes or circulating antimicrobial drugs. A less appreciated but growing body of evidence indicates that the airway epithelium also plays a crucial role in host defence against inhaled pathogens, by promoting ingestion and quelling of microorganisms, processes that become subverted to favour pathogen activities and promote respiratory disease. To achieve a deeper understanding of beneficial and deleterious activities of respiratory epithelia during antimicrobial defence, we have comprehensively surveyed all current knowledge on airway epithelial uptake of bacterial and fungal pathogens. We find that microbial uptake by airway epithelial cells (AECs) is a common feature of respiratory host-microbe interactions whose stepwise execution, and impacts upon the host, vary by pathogen. Amidst the diversity of underlying mechanisms and disease outcomes, we identify four key infection scenarios and use best-characterised host-pathogen interactions as prototypical examples of each. The emergent view is one in which effi-ciency of AEC-mediated pathogen clearance correlates directly with severity of disease outcome, therefore highlighting an important unmet need to broaden our understanding of the antimicrobial properties of respiratory epithelia and associated drivers of pathogen entry and intracellular fate.


Assuntos
Infecções Bacterianas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Micoses/imunologia , Mucosa Respiratória/microbiologia , Apoptose , Bactérias/patogenicidade , Infecções Bacterianas/microbiologia , Fenômenos Fisiológicos Bacterianos/imunologia , Fungos/patogenicidade , Fungos/fisiologia , Humanos , Interações Microbianas , Micoses/microbiologia , Mucosa Respiratória/imunologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa