Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Med Phys ; 45(4): 234-239, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33953499

RESUMO

AIM: The aim of the study was to find the most balanced plan with an optimal combination of planning parameters in helical tomotherapy (HT) for bilateral breast irradiation by evaluating dosimetric indices and time factors. In particular, we investigated the best combination of field width (FW), pitch, and modulation factor (MF). MATERIALS AND METHODS: A total of 90 plans (18 plans for each patient) was created in this study, with different combination of planning parameters (FW: 2.5 cm [F1] and 5 cm [F2]; pitch: 0.215 [P1], 0.287 [P2], and 0.43 [P3]; and MF: 2.0 [M1], 2.5 [M2], and 3.0 [M3]). Plans were analyzed using several dosimetric indices: homogeneity index, conformity index, dose near minimum D98%, dose near maximum D2%, and the coverage by D95% of the target. Organ at risk (OAR) doses were evaluated by mean dose, V5Gy and V25Gy for the heart and mean dose V5Gy and V20Gy for both the lungs. Treatment time was also reported for all plans. RESULTS: Reducing FW from 5 cm to 2.5 cm increased the treatment time by 40%-50% and improved homogeneity of the target. Tightening the pitch value from 0.43 to 0.215 improved target as well as OAR doses without increasing the treatment time. Increasing MF from 2 to 3 improved all the dosimetric indices and also increased treatment time. CONCLUSIONS: On the basis of our analysis, a plan with FW 5 cm, pitch 0.215, and MF 2.5 can be considered as an optimal combination of planning parameters for bilateral breast irradiation in HT technique.

2.
Med Dosim ; 34(1): 20-5, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19181251

RESUMO

Endometrial carcinoma is the most common malignancy arising in the female genital tract. Intracavitary vaginal cuff irradiation may be given alone or with external beam irradiation in patients determined to be at risk for locoregional recurrence. Vaginal cylinders are often used to deliver a brachytherapy dose to the vaginal apex and upper vagina or the entire vaginal surface in the management of postoperative endometrial cancer or cervical cancer. The dose distributions of HDR vaginal cylinders must be evaluated carefully, so that clinical experiences with LDR techniques can be used in guiding optimal use of HDR techniques. The aim of this study was to optimize dose distribution for Gammamed plus vaginal cylinders. Placement of dose optimization points was evaluated for its effect on optimized dose distributions. Two different dose optimization point models were used in this study, namely non-apex (dose optimization points only on periphery of cylinder) and apex (dose optimization points on periphery and along the curvature including the apex points). Thirteen dwell positions were used for the HDR dosimetry to obtain a 6-cm active length. Thus 13 optimization points were available at the periphery of the cylinder. The coordinates of the points along the curvature depended on the cylinder diameters and were chosen for each cylinder so that four points were distributed evenly in the curvature portion of the cylinder. Diameter of vaginal cylinders varied from 2.0 to 4.0 cm. Iterative optimization routine was utilized for all optimizations. The effects of various optimization routines (iterative, geometric, equal times) was studied for the 3.0-cm diameter vaginal cylinder. The effect of source travel step size on the optimized dose distributions for vaginal cylinders was also evaluated. All optimizations in this study were carried for dose of 6 Gy at dose optimization points. For both non-apex and apex models of vaginal cylinders, doses for apex point and three dome points were higher for the apex model compared with the non-apex model. Mean doses to the optimization points for both the cylinder models and all the cylinder diameters were 6 Gy, matching with the prescription dose of 6 Gy. Iterative optimization routine resulted in the highest dose to apex point and dome points. The mean dose for optimization point was 6.01 Gy for iterative optimization and was much higher than 5.74 Gy for geometric and equal times routines. Step size of 1 cm gave the highest dose to the apex point. This step size was superior in terms of mean dose to optimization points. Selection of dose optimization points for the derivation of optimized dose distributions for vaginal cylinders affects the dose distributions.


Assuntos
Braquiterapia/métodos , Neoplasias do Endométrio/radioterapia , Equipamentos e Provisões para Radiação , Neoplasias do Colo do Útero/radioterapia , Braquiterapia/instrumentação , Protocolos Clínicos , Relação Dose-Resposta à Radiação , Desenho de Equipamento , Feminino , Humanos , Dosagem Radioterapêutica , Tecnologia Radiológica/instrumentação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa