Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(2): e2304406120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38181057

RESUMO

Despite a sea of interpretability methods that can produce plausible explanations, the field has also empirically seen many failure cases of such methods. In light of these results, it remains unclear for practitioners how to use these methods and choose between them in a principled way. In this paper, we show that for moderately rich model classes (easily satisfied by neural networks), any feature attribution method that is complete and linear-for example, Integrated Gradients and Shapley Additive Explanations (SHAP)-can provably fail to improve on random guessing for inferring model behavior. Our results apply to common end-tasks such as characterizing local model behavior, identifying spurious features, and algorithmic recourse. One takeaway from our work is the importance of concretely defining end-tasks: Once such an end-task is defined, a simple and direct approach of repeated model evaluations can outperform many other complex feature attribution methods.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa