Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Blood ; 140(22): 2323-2334, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35984965

RESUMO

Allogeneic hematopoietic transplantation is a powerful treatment for hematologic malignancies. Posttransplant immune incompetence exposes patients to disease relapse and infections. We previously demonstrated that donor alloreactive natural killer (NK) cells ablate recipient hematopoietic targets, including leukemia. Here, in murine models, we show that infusion of donor alloreactive NK cells triggers recipient dendritic cells (DCs) to synthesize ß-2-microglobulin (B2M) that elicits the release of c-KIT ligand and interleukin-7 that greatly accelerate posttransplant immune reconstitution. An identical chain of events was reproduced by infusing supernatants of alloreactive NK/DC cocultures. Similarly, human alloreactive NK cells triggered human DCs to synthesize B2M that induced interleukin-7 production by thymic epithelial cells and thereby supported thymocyte cellularity in vitro. Chromatography fractionation of murine and human alloreactive NK/DC coculture supernatants identified a protein with molecular weight and isoelectric point of B2M, and mass spectrometry identified amino acid sequences specific of B2M. Anti-B2M antibody depletion of NK/DC coculture supernatants abrogated their immune-rebuilding effect. B2M knock-out mice were unable to undergo accelerated immune reconstitution, but infusion of (wild-type) NK/DC coculture supernatants restored their ability to undergo accelerated immune reconstitution. Similarly, silencing the B2M gene in human DCs, before coculture with alloreactive NK cells, prevented the increase in thymocyte cellularity in vitro. Finally, human recombinant B2M increased thymocyte cellularity in a thymic epithelial cells/thymocyte culture system. Our studies uncover a novel therapeutic principle for treating posttransplant immune incompetence and suggest that, upon its translation to the clinic, patients may benefit from adoptive transfer of large numbers of cytokine-activated, ex vivo-expanded donor alloreactive NK cells.


Assuntos
Neoplasias Hematológicas , Interleucina-7 , Animais , Humanos , Camundongos , Transplante de Medula Óssea , Células Matadoras Naturais , Transplante Homólogo , Microglobulina beta-2/imunologia
2.
J Membr Biol ; 248(6): 991-1004, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26065901

RESUMO

Prostasomes are vesicles secreted by prostate epithelial cells and are found in abundance in the semen. Here we characterized two different prostasome populations isolated from human seminal fluid. Prostasomes were isolated using differential centrifugation, while dynamic light scattering (DLS) was used to characterize their size and size distribution. Their protein content was analyzed using two-dimensional electrophoresis and mass spectrometry. DLS showed two distinct prostasome subpopulations in centrifuged seminal plasma, with an average hydrodynamic radius of 80 and 300 nm. The larger population was isolated after centrifugation at 20,000 × g (P20), while the smaller one was recovered at 100,000 × g (P100). The two fractions had a similar lipid composition, showing an elevated content of sphingomyelin and cholesterol. The P100 vesicles showed a significant over-expression of proteins involved in the endosomal sorting complexes required for transport (ESCRT) machinery such as Alix, TSG101, and syntenin-1. Some proteins possibly involved in prostate cancer were present only in one specific population (TMPRSS2 in P100 and VCP in P20). The different size and protein profile in the two subpopulations of prostasomes might support differential roles of the semen vesicles toward the target cells, and/or different secretion pathways from the organ of origin.


Assuntos
Células Epiteliais/metabolismo , Próstata/metabolismo , Proteoma , Proteômica , Adulto , Aminopeptidases/metabolismo , Colesterol/metabolismo , Biologia Computacional/métodos , Difusão Dinâmica da Luz , Humanos , Lipídeos , Masculino , Fosfolipídeos/metabolismo , Proteômica/métodos , Sêmen/metabolismo , Adulto Jovem
3.
J Biol Chem ; 286(31): 27092-102, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21659508

RESUMO

Polyunsaturated fatty acids (PUFAs) inhibit proliferation and induce differentiation in leukemia cells. To investigate the molecular mechanisms whereby fatty acids affect these processes, U937 leukemia cells were conditioned with stearic, oleic, linolenic, α-linolenic, arachidonic, eicosapentaenoic, and docosahexaenoic acids. PUFAs affected proliferation; eicosapentaenoic acid (EPA) was the most potent on cell cycle progression. EPA enhanced the expression of the myeloid lineage-specific transcription factors CCAAT/enhancer-binding proteins (C/EBPß and C/EBPδ), PU.1, and c-Jun, resulting in increased expression of the monocyte lineage-specific target gene, the macrophage colony-stimulating factor receptor. Indeed, it is known that PU.1 and C/EBPs interact with their consensus sequences on a small DNA fragment of macrophage colony-stimulating factor receptor promoter, which is a determinant for expression. We demonstrated that C/EBPß and C/EBPδ bind the same response element as a heterodimer. We focused on the enhanced expression of C/EBPδ, which has been reported to be a tumor suppressor gene silenced by promoter hypermethylation in U937 cells. After U937 conditioning with EPA and bisulfite sequencing of the -370/-20 CpG island on the C/EBPδ promoter region, we found a site-specific CpG demethylation that was a determinant for the binding activity of Sp1, an essential factor for C/EBPδ gene basal expression. Our results provide evidence for a new role of PUFAs in the regulation of gene expression. Moreover, we demonstrated for the first time that re-expression of the tumor suppressor C/EBPδ is controlled by the methylation state of a site-specific CpG dinucleotide.


Assuntos
Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Ilhas de CpG , Metilação de DNA/efeitos dos fármacos , Ácido Eicosapentaenoico/farmacologia , Oncogenes , Sequência de Bases , Proteína delta de Ligação ao Facilitador CCAAT/genética , Imunoprecipitação da Cromatina , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Citometria de Fluxo , Humanos , Reação em Cadeia da Polimerase , Células U937
4.
Am J Pathol ; 177(5): 2176-84, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20829440

RESUMO

Currently, despite well-known mutational causes, a universal treatment for neuromuscular disorders is still lacking, and current therapeutic efforts are mainly restricted to symptomatic treatments. In the present study, δ-sarcoglycan-null dystrophic hamsters were fed a diet enriched in flaxseed-derived ω3 α-linolenic fatty acid from weaning until death. α-linolenic fatty acid precluded the dystrophic degeneration of muscle morphology and function. In fact, in dystrophic animals fed flaxseed-derived α-linolenic fatty acid, the histological appearance of the muscular tissue was improved, the proliferation of interstitial cells was decreased, and the myogenic differentiation originated new myocytes to repair the injured muscle. In addition, muscle myofibers were larger and cell membrane integrity was preserved, as witnessed by the correct localization of α-, ß-, and γ-sarcoglycans and α-dystroglycan. Furthermore, the cytoplasmic accumulation of both ß-catenin and caveolin-3 was abolished in dystrophic hamster muscle fed α-linolenic fatty acid versus control animals fed standard diet, while α-myosin heavy chain was expressed at nearly physiological levels. These findings, obtained by dietary intervention only, introduce a novel concept that provides evidence that the modulation of the plasmalemma lipid profile could represent an efficacious strategy to ameliorate human muscular dystrophy.


Assuntos
Dieta , Gorduras na Dieta/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Músculo Esquelético/patologia , Distrofias Musculares/patologia , Animais , Diferenciação Celular , Proliferação de Células , Cricetinae , Linho/química , Humanos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Distrofias Musculares/genética , Transdução de Sinais/fisiologia
5.
Mov Disord ; 26(9): 1639-47, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21542017

RESUMO

Among heat shock proteins, mortalin has been linked to the pathogenesis of Parkinson's disease. In the present work a rat model of Parkinson's disease was used to analyze the expression of striatal proteins and, more specifically, mortalin expression. The possible involvement of mortalin in Parkinson's disease pathogenesis was further investigated by utilizing an electrophysiological approach and pharmacological inhibition of mortalin in both the physiological and the parkinsonian states. Proteomic analysis was used to investigate changes in striatal protein expression in the 6-hydroxydopamine rat model of Parkinson's disease. The electrophysiological effects of MKT-077, a rhodamine-123 analogue acting as an inhibitor of mortalin, were measured by field potential recordings from corticostriatal brain slices obtained from control, sham-operated, and 6-hydroxydopamine-denervated animals. Slices in the presence of rotenone, an inhibitor of mitochondrial complex I, were also analyzed. Proteomic analysis revealed downregulation of mortalin in the striata of 6-hydroxydopamine-treated rats in comparison with sham-operated animals. MKT-077 reduced corticostriatal field potential amplitude in physiological conditions, inducing membrane depolarization and inward current in striatal medium spiny neurons. In addition, we observed that concentrations of MKT-077 not inducing any electrophysiological effect in physiological conditions caused significant changes in striatal slices from parkinsonian animals as well as in slices treated with a submaximal concentration of rotenone. These findings suggest a critical link between mortalin function and mitochondrial activity in both physiological and pathological conditions mimicking Parkinson's disease.


Assuntos
Antiparasitários/uso terapêutico , Proteínas de Choque Térmico HSP70/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Potenciais de Ação/efeitos dos fármacos , Animais , Córtex Cerebral/patologia , Corpo Estriado/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Interações Medicamentosas , Complexo I de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Técnicas In Vitro , Masculino , Neurônios/efeitos dos fármacos , Oxidopamina/toxicidade , Doença de Parkinson/etiologia , Doença de Parkinson/patologia , Proteômica/métodos , Piridinas/farmacologia , Ratos , Ratos Wistar , Tiazóis/farmacologia
6.
Mol Cell Biochem ; 347(1-2): 29-39, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20938723

RESUMO

Hind limb-suspended rats represent a sedentary-hyperinsulinemic model with a liver dyslipidemia mainly related to changes in sterol regulatory element-binding protein 1 (SREBP-1) and peroxisome proliferator-activated receptor-α (PPARα) expression and activity. To assess the effects of dietary fatty acids on hepatic lipid homeostasis, the hepatic expression and activity of PPARα, SREBP-1, and hepatocyte nuclear factor-4α (HNF-4α) were investigated in this animal model. In control and sedentary rats, diets enriched with saturated, monounsaturated, and polyunsaturated fatty acids (PUFA) enhanced the expression of the PPARα target genes carnitine palmitoyltransferase 1 and acyl-CoA oxidase, the highest effect being exerted by ω-3. The same diets reduced SREBP-1 mRNA and target lipogenic gene expression, as indicated by the reduction in fatty acid synthase and acetyl-CoA carboxylase mRNA content. Effects were greater in sedentary rat liver than in controls on the same diet. Only the ω-3 enriched diet decreased liver triglyceride content as well as plasma cholesterol and triglyceride levels in sedentary rats. This effect may be mainly related to the enhanced mitochondrial and peroxisomal ß-oxidation genes expression. On the other hand, saturated fatty acid-enriched diet induced an increase in liver triglyceride content and enhanced plasma cholesterol and triglyceride levels, both in control and immobilized rats. This detrimental effect may be ascribed to the induced HNF-4α binding activity on ApoCIII promoter and to the enhanced ApoCIII mRNA levels both in control and in sedentary rat livers. In conclusion, we can speculate that dietary saturated fats, acting at apolipoprotein transcriptional level, may impact on the close relationship existing among high ApoCIII plasma level, dyslipidemia, and atherosclerosis.


Assuntos
Apolipoproteína C-III/genética , DNA/metabolismo , Gorduras na Dieta/farmacologia , Ácidos Graxos/farmacologia , Fator 4 Nuclear de Hepatócito/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Descanso/fisiologia , Animais , Apolipoproteína C-III/metabolismo , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Gorduras na Dieta/administração & dosagem , Ácidos Graxos/administração & dosagem , Insulina/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Lipídeos/sangue , Fígado/enzimologia , Masculino , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Restrição Física , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Transcrição/metabolismo
7.
Proteomics ; 10(11): 2099-112, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20336680

RESUMO

Protein expression changes induced in thioglycolate-elicited peritoneal murine macrophages (M Phi) by infection with type III Group B Streptococcus (GBS) are described. Proteins from control M Phi and M Phi incubated 2 h with live or heat-inactivated GBS were separated by 2-DE. Proteins whose expression was significantly different in infected M Phi, as compared with control cells, were identified by MS/MS analysis. Changes in the expression level of proteins involved in both positive and negative modulation of phagocytic functions, stress response and cell death were induced in M Phi by GBS infection. In particular, expression of enzymes playing a key role in production of reactive oxygen species was lowered in GBS-infected M Phi. Significant alterations in the expression of some metabolic enzymes were also observed, most of the glycolytic and of the pentose-cycle enzymes being down-regulated in M Phi infected with live GBS. Finally, evidence was obtained that GBS infection affects the expression of enzymes or enzyme subunits involved in ATP synthesis and in adenine nucleotides interconversion processes.


Assuntos
Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/microbiologia , Proteoma/metabolismo , Streptococcus agalactiae/fisiologia , Animais , Apoptose/fisiologia , Células Cultivadas , Eletroforese em Gel Bidimensional , Feminino , Masculino , Camundongos , Streptococcus agalactiae/patogenicidade , Espectrometria de Massas em Tandem
8.
Int J Oncol ; 31(6): 1301-8, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17982655

RESUMO

A typical feature in systemic lupus erythemathosus patients is the presence of autoantibodies to the carboxyl-terminal homologous P proteins (P0, P1, P2) domain (C-22 P0 epitope). In this report we provide evidence for the in vivo immunogenicity of the P0 protein in head and neck cancer patients as well as overexpression by immunohistochemistry of the C-22 P0 epitope in invasive carcinomas (55/57). Overexpression of this epitope was also significantly associated with a number of pathological lesions arising in the head and neck stratified epithelium including acanthosis (8/8), benign tumors (11/11), dysplasia (23/25) and in situ carcinomas (9/9). Intermediate cell layer restricted epitope overexpression was observed in well differentiated carcinomas, while undifferentiated tumors showed overexpression throughout the cell layers. Employing recombinant P proteins, sera from 40 of the 57 carcinoma patients and 39 normal donors, were subjected to immunoblot analysis. Immunity to P0 protein (7/40) was associated with malignancy and with advanced disease stage, but it was not dependent on the C-22 P0 epitope overexpression, although it was the preferential autoantibody target in 4 patients. Increased expression of the C-22 P0 epitope on the surface of pharynx cancer cells following cellular stress in vitro, may imply P0 protein presentation as an in vivo autoantibody target in cancer patients. Evidence for immunity to the P0 protein, as well as overexpression in patients with head and neck carcinoma may be relevant for monitoring cancer progression, in planning immunotherapeutic strategies, and contribute to the understanding of immuno-biological behaviour of head and neck carcinomas.


Assuntos
Carcinoma de Células Escamosas/imunologia , Neoplasias de Cabeça e Pescoço/imunologia , Proteínas Ribossômicas/imunologia , Sequência de Aminoácidos , Anticorpos/sangue , Anticorpos Monoclonais/imunologia , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Epitopos , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Dados de Sequência Molecular , Estadiamento de Neoplasias
9.
J Proteomics ; 152: 329-338, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-27890797

RESUMO

Glioblastoma (GBM) is the most common and aggressive brain tumour of adults. The metabolic phenotype of GBM cells is highly dependent on glycolysis; therefore, therapeutic strategies aimed at interfering with glycolytic pathways are under consideration. 3-Bromopyruvate (3BP) is a potent antiglycolytic agent, with a variety of targets and possible effects on global cell metabolism. Here we analyzed the changes in protein expression on a GBM cell line (GL15 cells) caused by 3BP treatment using a global proteomic approach. Validation of differential protein expression was performed with immunoblotting and enzyme activity assays in GL15 and U251 cell lines. The results show that treatment of GL15 cells with 3BP leads to extensive changes in the expression of glycolytic enzymes and stress related proteins. Importantly, other metabolisms were also affected, including pentose phosphate pathway, aminoacid synthesis, and glucose derivatives production. 3BP elicited the activation of stress response proteins, as shown by the phosphorylation of HSPB1 at serine 82, caused by the concomitant activation of the p38 pathway. Our results show that inhibition of glycolysis in GL15 cells by 3BP influences different but interconnected pathways. Proteome analysis may help in the molecular characterization of the glioblastoma response induced by pharmacological treatment with antiglycolytic agents. SIGNIFICANCE: Alteration of the glycolytic pathway characterizes glioblastoma (GBM), one of the most common brain tumours. Metabolic reprogramming with agents able to inhibit carbohydrate metabolism might be a viable strategy to complement the treatment of these tumours. The antiglycolytic agent 3-bromopyruvate (3BP) is able to strongly inhibit glycolysis but it may affect also other cellular pathways and its precise cellular targets are currently unknown. To understand the protein expression changes induced by 3BP, we performed a global proteomic analysis of a GBM cell line (GL15) treated with 3BP. We found that 3BP affected not only the glycolytic pathway, but also pathways sharing metabolic intermediates with glycolysis, such as the pentose phosphate pathway and aminoacid metabolism. Furthermore, changes in the expression of proteins linked to resistance to cell death and stress response were found. Our work is the first analysis on a global scale of the proteome changes induced by 3BP in a GBM model and may contribute to clarifying the anticancer potential of this drug.


Assuntos
Glioblastoma/metabolismo , Glicólise/efeitos dos fármacos , Proteínas de Choque Térmico/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Piruvatos/farmacologia , Aminoácidos/metabolismo , Metabolismo dos Carboidratos , Linhagem Celular Tumoral , Proteínas de Choque Térmico/metabolismo , Humanos , Via de Pentose Fosfato , Fosforilação , Serina/metabolismo
10.
Biochim Biophys Acta ; 1737(2-3): 138-44, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16290114

RESUMO

The effect of dietary polyunsaturated fatty acids on the expression of differentiation and proliferation markers in Morris 3924A hepatoma cells was investigated. ACT/I rats were conditioned 10 days with diets enriched with linoleic acid or alpha-linolenic acid before subcutaneous hepatoma cell transplantation. After 19 days from the inoculum, the mRNA levels of liver-enriched transcription factors and of their target genes were quantified. Both linoleic acid- and linolenic acid-enriched diets induced a decrease of beta-actin, AFP, PCNA, c-myc and of hepatocyte nuclear factors HNF-1alpha and HNF-4alpha mRNA levels in tumor tissue whereas HNF-3beta expression was induced by both dietary treatments. Only the alpha-linolenic acid-enriched diet was effective in reducing c-jun and increasing albumin mRNA levels. Since albumin is a C/EBPalpha target gene, C/EBPalpha gene transcription was evaluated at both protein and mRNA levels. It was found that alpha-linolenic acid-enriched diet did not enhance the C/EBPalpha mRNA content in hepatoma tissue while inducing C/EBPalpha protein expression with an isoform pattern similar to the hepatic phenotype. This evidence implies that alpha-linolenic acid or one of its metabolic products induce albumin synthesis in hepatoma cells by modulating C/EBPalpha gene expression at post-transcriptional level.


Assuntos
Gorduras Insaturadas na Dieta/administração & dosagem , Ácidos Graxos Insaturados/administração & dosagem , Neoplasias Hepáticas Experimentais/dietoterapia , Neoplasias Hepáticas Experimentais/patologia , Animais , Biomarcadores Tumorais/genética , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Diferenciação Celular/genética , Proliferação de Células , Ácidos Graxos/análise , Expressão Gênica , Lipídeos/química , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Ratos , Ratos Endogâmicos ACI , Fatores de Transcrição/genética
11.
PLoS One ; 9(1): e85025, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24454781

RESUMO

Epigenetic alterations, including aberrant DNA methylation, contribute to tumor development and progression. Silencing of tumor suppressor genes may be ascribed to promoter DNA hypermethylation, a reversible phenomenon intensely investigated as potential therapeutic target. Previously, we demonstrated that eicosapentaenoic acid (EPA) exhibits a DNA demethylating action that promotes the re-expression of the tumor suppressor gene CCAAT/enhancer-binding protein δ (C/EBPδ). The C/EBPß/C/EBPδ heterodimer formed appears essential for the monocyte differentiation commitment. The present study aims to evaluate the effect of EPA on RAS/extracellular signal regulated kinases (ERK1/2)/C/EBPß pathway, known to be induced during the monocyte differentiation program. We found that EPA conditioning of U937 leukemia cells activated RAS/ERK/C/EBPß pathway, increasing the C/EBPß and ERK1/2 active phosphorylated forms. Transcriptional induction of the upstream activator H-Ras gene resulted in increased expression of H-Ras protein in the active pool of non raft membrane fraction. H-Ras gene analysis identified an hypermethylated CpG island in intron 1 that can affect the DNA-protein interaction modifying RNA polymerase II (RNAPII) activity. EPA treatment demethylated almost completely this CpG island, which was associated with an enrichment of active RNAPII. The increased binding of the H-Ras transcriptional regulator p53 to its consensus sequence within the intronic CpG island further confirmed the effect of EPA as demethylating agent. Our results provide the first evidence that an endogenous polyunsaturated fatty acid (PUFA) promotes a DNA demethylation process responsible for the activation of RAS/ERK/C/EBPß pathway during the monocyte differentiation commitment. The new role of EPA as demethylating agent paves the way for studying PUFA action when aberrant DNA methylation is involved.


Assuntos
Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Ilhas de CpG/genética , Metilação de DNA/genética , Ácido Eicosapentaenoico/farmacologia , Íntrons/genética , Leucemia/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/genética , Azacitidina/farmacologia , Sequência de Bases , Metilação de DNA/efeitos dos fármacos , Éxons/genética , Humanos , Leucemia/patologia , Sistema de Sinalização das MAP Quinases/genética , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Dados de Sequência Molecular , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Isoformas de Proteínas/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Células U937
12.
Proteomics Clin Appl ; 1(7): 672-80, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21136722

RESUMO

BRAF, a serine/threonine kinase of the RAF family, is a downstream transducer of the RAS-regulated MAPK pathway. V600E mutation of BRAF protein is the most common genetic alteration occurring in papillary thyroid carcinomas and is prognostic of poor clinicopathological outcomes. Protein expression in the subclass of PTC bearing the BRAF(V600E) mutation was investigated by using 2-DE and MS/MS techniques and compared to that of matched normal thyroid tissues from seven patients. 2-D gel image analysis revealed that the expression of eight polypeptide spots, corresponding to five proteins, were significantly underexpressed in PTC bearing BRAF(V600E) mutation whereas 25 polypeptides, representing 19 distinct proteins, were significantly upregulated in tumour tissue, as compared to normal thyroid. Among the differentially expressed polypeptides, mitochondrial proteins, ROS-scavenger enzymes, apoptosis-related proteins as well as proteins involved in tumour cell proliferation were identified. Although dissimilarities between the present results and those previously reported can be ascribed to the use of different 2-DE techniques, the possibility that BRAF(V600E) mutation is responsible for changes in protein expression distinct from those induced by other oncogenes cannot be ruled out.

13.
Am J Pathol ; 169(6): 1913-24, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17148657

RESUMO

Randomized clinical trials have demonstrated that the increased intake of omega-3 polyunsaturated fatty acids significantly reduces the risk of ischemic cardiovascular disease, but no investigations have been performed in hereditary cardiomyopathies with diffusely damaged myocardium. In the present study, delta-sarcoglycan-null cardiomyopathic hamsters were fed from weaning to death with an alpha-linolenic acid (ALA)-enriched versus standard diet. Results demonstrated a great accumulation of ALA and eicosapentaenoic acid and an increased eicosapentaenoic/arachidonic acid ratio in cardiomyopathic hamster hearts, correlating with the preservation of myocardial structure and function. In fact, ALA administration preserved plasmalemma and mitochondrial membrane integrity, thus maintaining proper cell/extracellular matrix contacts and signaling, as well as a normal gene expression profile (myosin heavy chain isoforms, atrial natriuretic peptide, transforming growth factor-beta1) and a limited extension of fibrotic areas within ALA-fed cardiomyopathic hearts. Consequently, hemodynamic indexes were safeguarded, and more than 60% of ALA-fed animals were still alive (mean survival time, 293+/-141.8 days) when all those fed with standard diet were deceased (mean survival time, 175.9+/-56 days). Therefore, the clinically evident beneficial effects of omega-3 polyunsaturated fatty acids are mainly related to preservation of myocardium structure and function and the attenuation of myocardial fibrosis.


Assuntos
Cardiomegalia/dietoterapia , Cardiomiopatias/dietoterapia , Gorduras Insaturadas na Dieta/uso terapêutico , Ácidos Graxos Ômega-3/uso terapêutico , Ácido alfa-Linolênico/uso terapêutico , Animais , Cardiomiopatias/prevenção & controle , Cricetinae , Modelos Animais de Doenças , Fibrose Endomiocárdica/patologia , Fibrose Endomiocárdica/prevenção & controle , Ácidos Graxos/sangue , Longevidade , Contração Miocárdica
14.
Blood ; 105(7): 2812-20, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15576473

RESUMO

We generated a murine monoclonal antibody (B28p) detecting an antigenic determinant shared by the immunoglobulin superfamily receptor translocation-associated 1 (IRTA1) receptor (the immunogen used to raise B28p) and an unrelated 28-kDa protein that was subsequently subjected to extensive characterization. The expression of the 28-kDa protein in normal lymphohematopoietic tissues was restricted to B cells and plasma cells and clearly differed from that expected for IRTA1 (selectively expressed by mucosa-associated lymphoid tissue [MALT] marginal zone B cells). Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE)/mass-spectrometry analysis identified the 28-kDa protein as human tumor protein D52 (TPD52), whose expression had been previously described only in normal and neoplastic epithelia. Specific B28p reactivity with TPD52 was confirmed by immunostaining/immunoblotting of TPD52-transfected cells. TPD52 expression pattern in normal and neoplastic B cells was unique. In fact, unlike other B-cell molecules (paired box 5 [PAX5], CD19, CD79a, CD20, CD22), which are down-regulated during differentiation from B cells to plasma cells, TPD52 expression reached its maximum levels at the plasma cell stage. In the Thiel myeloma cell line, TPD52 bound to annexin VI in a Ca(2+)-dependent manner, suggesting that these molecules may act in concert to regulate secretory processes in plasma cells, similarly to what was observed in pancreatic acinar cells. Finally, the anti-TPD52 monoclonal antibody served as a valuable tool for the diagnosis of B-cell malignancies.


Assuntos
Anexina A6/metabolismo , Cálcio/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Plasmócitos/fisiologia , Animais , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Linfócitos B/fisiologia , Linhagem Celular Tumoral , Eletroforese em Gel Bidimensional , Epitopos de Linfócito B/imunologia , Regulação Leucêmica da Expressão Gênica/imunologia , Leucemia de Células B/diagnóstico , Leucemia de Células B/fisiopatologia , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Peso Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/imunologia , Receptores de Superfície Celular/imunologia , Receptores Fc
15.
Mol Cell Biochem ; 252(1-2): 73-81, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14577578

RESUMO

The cardiomyopathic hamster is characterized by a naturally occurring deletion in the delta-sarcoglycan gene generating either the hypertrophic or the dilatative phenotype of cardiomyopathy. This evidence suggests that other genetic or environmental factors might concur to the pathogenesis of cardiomyopathy. The aim of the present study was to investigate on the possibility that other genes are involved in the pathogenesis of hamster cardiomyopathy. For this purpose, a series of genes of cardiomyopathic and healthy hamsters were compared by the differential display technique. The hamster cytochrome c oxidase mitochondrial subunit III (COIII) gene has been sequenced and identified as the gene upregulated in brain and skeletal muscle. The gene sequencing and restriction analysis demonstrated that a missense mutation is present in the COIII gene of hamsters exhibiting hypertrophic cardiomyopathy while no mutations were present in dilatative cardiomyopathic hamsters. The mutation was heteroplasmic and the heteroplasmy level was increased with age in skeletal muscle and heart. The ultrastructural analysis of cardiac tissue showed severe damage in the mitochondrial structure of hypertrophic but not dilatative hamster hearts. These results suggest that the pathogenesis of the cardiac damage in hypertrophic cardiomyopathic hamster may be sustained by multiple mutations exerting a cumulative effect on both structure and function of cardiac muscle.


Assuntos
Cardiomegalia/genética , DNA Mitocondrial/genética , Mutação de Sentido Incorreto , Sequência de Aminoácidos , Animais , Sequência de Bases , Northern Blotting , Clonagem Molecular , Cricetinae , Primers do DNA , DNA Complementar , Complexo IV da Cadeia de Transporte de Elétrons/genética , Hibridização In Situ , Mitocôndrias Cardíacas/enzimologia , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa