Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 158(1): 014902, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36610972

RESUMO

Lyotropic liquid crystal phases (LCPs) are widely studied for diverse applications, including protein crystallization and drug delivery. The structure and properties of LCPs vary widely depending on the composition, concentration, temperature, pH, and pressure. High-throughput structural characterization approaches, such as small-angle x-ray scattering (SAXS), are important to cover meaningfully large compositional spaces. However, high-throughput LCP phase analysis for SAXS data is currently lacking, particularly for patterns of multiphase mixtures. In this paper, we develop semi-automated software for high throughput LCP phase identification from SAXS data. We validate the accuracy and time-savings of this software on a total of 668 SAXS patterns for the LCPs of the amphiphile hexadecyltrimethylammonium bromide (CTAB) in 53 acidic or basic ionic liquid derived solvents, within a temperature range of 25-75 °C. The solvents were derived from stoichiometric ethylammonium nitrate (EAN) or ethanolammonium nitrate (EtAN) by adding water to vary the ionicity, and adding precursor ions of ethylamine, ethanolamine, and nitric acid to vary the pH. The thermal stability ranges and lattice parameters for CTAB-based LCPs obtained from the semi-automated analysis showed equivalent accuracy to manual analysis, the results of which were previously published. A time comparison of 40 CTAB systems demonstrated that the automated phase identification procedure was more than 20 times faster than manual analysis. Moreover, the high throughput identification procedure was also applied to 300 unpublished scattering patterns of sodium dodecyl-sulfate in the same EAN and EtAN based solvents in this study, to construct phase diagrams that exhibit phase transitions from micellar, to hexagonal, cubic, and lamellar LCPs. The accuracy and significantly low analysis time of the high throughput identification procedure validates a new, rapid, unrestricted analytical method for the determination of LCPs.


Assuntos
Cristais Líquidos , Água , Espalhamento a Baixo Ângulo , Água/química , Difração de Raios X , Cristais Líquidos/química , Cetrimônio , Solventes , Automação
2.
J Chem Phys ; 159(13)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37795788

RESUMO

The binary Xe-Ar system has been studied in a series of high pressure diamond anvil cell experiments up to 60 GPa at 300 K. In-situ x-ray powder diffraction and Raman spectroscopy indicate the formation of a van der Waals compound, XeAr2, at above 3.5 GPa. Powder x-ray diffraction analysis demonstrates that XeAr2 adopts a Laves MgZn2-type structure with space group P63/mmc and cell parameters a = 6.595 Å and c = 10.716 Å at 4 GPa. Density functional theory calculations support the structure determination, with agreement between experimental and calculated Raman spectra. Our DFT calculations suggest that XeAr2 would remain stable without a structural transformation or decomposition into elemental Xe and Ar up to at least 80 GPa.

3.
Proc Natl Acad Sci U S A ; 117(24): 13374-13378, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32482874

RESUMO

Molecular hydrogen forms the archetypical quantum solid. Its quantum nature is revealed by behavior which is classically impossible and by very strong isotope effects. Isotope effects between [Formula: see text], [Formula: see text], and HD molecules come from mass difference and the different quantum exchange effects: fermionic [Formula: see text] molecules have antisymmetric wavefunctions, while bosonic [Formula: see text] molecules have symmetric wavefunctions, and HD molecules have no exchange symmetry. To investigate how the phase diagram depends on quantum-nuclear effects, we use high-pressure and low-temperature in situ Raman spectroscopy to map out the phase diagrams of [Formula: see text]-HD-[Formula: see text] with various isotope concentrations over a wide pressure-temperature (P-T) range. We find that mixtures of [Formula: see text], HD, and [Formula: see text] behave as an isotopic molecular alloy (ideal solution) and exhibit symmetry-breaking phase transitions between phases I and II and phase III. Surprisingly, all transitions occur at higher pressures for the alloys than either pure [Formula: see text] or [Formula: see text] This runs counter to any quantum effects based on isotope mass but can be explained by quantum trapping of high-kinetic energy states by the exchange interaction.

4.
J Synchrotron Radiat ; 29(Pt 3): 602-614, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35510993

RESUMO

Serial crystallography of membrane proteins often employs high-viscosity injectors (HVIs) to deliver micrometre-sized crystals to the X-ray beam. Typically, the carrier medium is a lipidic cubic phase (LCP) media, which can also be used to nucleate and grow the crystals. However, despite the fact that the LCP is widely used with HVIs, the potential impact of the injection process on the LCP structure has not been reported and hence is not yet well understood. The self-assembled structure of the LCP can be affected by pressure, dehydration and temperature changes, all of which occur during continuous flow injection. These changes to the LCP structure may in turn impact the results of X-ray diffraction measurements from membrane protein crystals. To investigate the influence of HVIs on the structure of the LCP we conducted a study of the phase changes in monoolein/water and monoolein/buffer mixtures during continuous flow injection, at both atmospheric pressure and under vacuum. The reservoir pressure in the HVI was tracked to determine if there is any correlation with the phase behaviour of the LCP. The results indicated that, even though the reservoir pressure underwent (at times) significant variation, this did not appear to correlate with observed phase changes in the sample stream or correspond to shifts in the LCP lattice parameter. During vacuum injection, there was a three-way coexistence of the gyroid cubic phase, diamond cubic phase and lamellar phase. During injection at atmospheric pressure, the coexistence of a cubic phase and lamellar phase in the monoolein/water mixtures was also observed. The degree to which the lamellar phase is formed was found to be strongly dependent on the co-flowing gas conditions used to stabilize the LCP stream. A combination of laboratory-based optical polarization microscopy and simulation studies was used to investigate these observations.


Assuntos
Glicerídeos , Lipídeos , Glicerídeos/química , Proteínas de Membrana/química , Viscosidade , Água/química , Difração de Raios X
5.
J Chem Phys ; 154(17): 174702, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34241079

RESUMO

Through a series of high-pressure x-ray diffraction experiments combined with in situ laser heating, we explore the pressure-temperature phase diagram of germanium (Ge) at pressures up to 110 GPa and temperatures exceeding 3000 K. In the pressure range of 64-90 GPa, we observe orthorhombic Ge-IV transforming above 1500 K to a previously unobserved high-temperature phase, which we denote as Ge-VIII. This high-temperature phase is characterized by a tetragonal crystal structure, space group I4/mmm. Density functional theory simulations confirm that Ge-IV becomes unstable at high temperatures and that Ge-VIII is highly competitive and dynamically stable at these conditions. The existence of Ge-VIII has profound implications for the pressure-temperature phase diagram, with melting conditions increasing to much higher temperatures than previous extrapolations would imply.

6.
J Chem Phys ; 149(2): 024306, 2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30007399

RESUMO

Intermetallic lithium compounds have found a wide range of applications owing to their light mass and desirable electronic and mechanical properties. Here, by compressing pure lithium and zinc mixtures in a diamond-anvil cell, we observe a direct reaction forming the stoichiometric compound LiZn, at pressures below 1 GPa. On further compression above 10 GPa, we observe the formation of Li2Zn, which is the highest lithium content compound to be discovered in the Li-Zn system. Our results constrain the structures of these compounds and their evolution with pressure, furthering our understanding of potentially useful light volume-efficient energy storage materials.

7.
J Chem Phys ; 148(14): 144310, 2018 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-29655356

RESUMO

In situ high-pressure high-temperature X-ray powder diffraction studies of the cobalt-hydrogen system reveal the direct synthesis of both the binary cobalt hydride (CoH) and a novel cobalt dihydride (CoH2). We observe the formation of fcc CoH at pressures of 4 GPa, which persists to pressures of 45 GPa. At this pressure, we see the emergence with time of a further expanded fcc lattice, which we identify as CoH2, where the hydrogen atoms occupy the tetrahedral vacancies. We have explored alternative synthesis routes of CoH2 and can lower the synthesis pressure to 35 GPa by the application of high temperature. CoH2 is stable to at least 55 GPa and decomposes into CoH below 10 GPa, releasing molecular hydrogen before further decomposing completely into its constituent elements below 3 GPa. As a first-row transition metal, cobalt has a relatively lower mass than other hydride-forming transition metals, and as a result, CoH2 has a high hydrogen content of 3.3 wt. % and a volumetric hydrogen density of 214 g/l.

8.
J Chem Phys ; 147(18): 184303, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29141438

RESUMO

The observation of high-temperature superconductivity in hydride sulfide (H2S) at high pressures has generated considerable interest in compressed hydrogen-rich compounds. High-pressure hydrogen selenide (H2Se) has also been predicted to be superconducting at high temperatures; however, its behaviour and stability upon compression remains unknown. In this study, we synthesize H2Se in situ from elemental Se and molecular H2 at pressures of 0.4 GPa and temperatures of 473 K. On compression at 300 K, we observe the high-pressure solid phase sequence (I-I'-IV) of H2Se through Raman spectroscopy and x-ray diffraction measurements, before dissociation into its constituent elements. Through the compression of H2Se in H2 media, we also observe the formation of a host-guest structure, (H2Se)2H2, which is stable at the same conditions as H2Se, with respect to decomposition. These measurements show that the behaviour of H2Se is remarkably similar to that of H2S and provides further understanding of the hydrogen chalcogenides under pressure.

9.
J Appl Crystallogr ; 57(Pt 3): 877-884, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38846774

RESUMO

The pair angle distribution function (PADF) is a three- and four-atom correlation function that characterizes the local angular structure of disordered materials, particles or nanocrystalline materials. The PADF can be measured using X-ray or electron fluctuation diffraction data, which can be collected by scanning or flowing a structurally disordered sample through a focused beam. It is a natural generalization of established pair distribution methods, which do not provide angular information. The software package pypadf provides tools to calculate the PADF from fluctuation diffraction data. The package includes tools for calculating the intensity correlation function, which is a necessary step in the PADF calculation and also the basis for other fluctuation scattering analysis techniques.

10.
J Colloid Interface Sci ; 650(Pt B): 1393-1405, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37480654

RESUMO

Ions are important to modulate protein properties, including solubility and stability, through specific ion effects. Ionic liquids (ILs) are designer salts with versatile ion combinations with great potential to control protein properties. Although protein-ion binding of common metals is well-known, the IL effect on proteins is not well understood. Here, we employ the model protein lysozyme in dilute and concentrated IL solutions to determine the specific ion binding effect on protein phase behaviour, activity, size and conformational change, aggregation and intermolecular interactions. A combination of spectroscopic techniques, activity assays, small-angle X-ray scattering, and crystallography highlights that ILs, particularly their anions, bind to specific sites in the protein hydration layer via polar contacts on charged, polar and aromatic residues. The specific ion binding can induce more flexible loop regions in lysozyme, while the ion binding in the bulk phase can be more dynamic in solution. Overall, the protein behaviour in ILs depends on the net effect of nonspecific interactions and specific ion binding. Compared to formate, the nitrate anion induced high protein solubility, low activity, elongated shape and aggregation, which is largely owing to its higher propensity for ion binding. These findings provide new insights into protein-IL binding interactions and using ILs to modulate protein properties.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Muramidase/química , Proteínas , Íons , Ânions/química
11.
J Phys Chem Lett ; 14(50): 11490-11496, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38085985

RESUMO

Using optical spectroscopy, X-ray diffraction, and electrical transport measurements, we have studied the pressure-induced metallization in BaH2 and Ba8H46. Our combined measurements suggest a structural phase transition from BaH2-II to BaH2-III accompanied by band gap closure and transformation to a metallic state at 57 GPa. The metallization is confirmed by resistance measurements as a function of the pressure and temperature. We also confirm that, with further hydrogenation, BaH2 forms the previously observed Weaire-Phelan Ba8H46, synthesized at 45 GPa and 1200 K. In this compound, metallization pressure is shifted to 85 GPa. Through a comparison of the properties of these two compounds, a question is raised about the importance of the hydrogen content in the electronic properties of hydride systems.

12.
J Phys Chem Lett ; 13(36): 8447-8454, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36053162

RESUMO

Through a series of high pressure diamond anvil experiments, we report the synthesis of alkaline earth (Ca, Sr, Ba) tetrahydrides, and investigate their properties through Raman spectroscopy, X-ray diffraction, and density functional theory calculations. The tetrahydrides incorporate both atomic and quasi-molecular hydrogen, and we find that the frequency of the intramolecular stretching mode of the H2δ- units downshifts from Ca to Sr and to Ba upon compression. The experimental results indicate that the larger the host cation, the longer the H2δ- bond. Analysis of the electron localization function (ELF) demonstrates that the lengthening of the H-H bond is caused by the charge transfer from the metal to H2δ- and by the steric effect of the metal host on the H-H bond. This effect is most prominent for BaH4, where the precompression of H2δ- units at 50 GPa results in bond lengths comparable to that of pure H2 above 275 GPa.

13.
IUCrJ ; 9(Pt 2): 231-242, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35371507

RESUMO

Intensity-correlation measurements allow access to nanostructural information on a range of ordered and disordered materials beyond traditional pair-correlation methods. In real space, this information can be expressed in terms of a pair-angle distribution function (PADF) which encodes three- and four-body distances and angles. To date, correlation-based techniques have not been applied to the analysis of microstructural effects, such as preferred orientation, which are typically investigated by texture analysis. Preferred orientation is regarded as a potential source of error in intensity-correlation experiments and complicates interpretation of the results. Here, the theory of preferred orientation in intensity-correlation techniques is developed, connecting it to the established theory of texture analysis. The preferred-orientation effect is found to scale with the number of crystalline domains in the beam, surpassing the nanostructural signal when the number of domains becomes large. Experimental demonstrations are presented of the orientation-dominant and nanostructure-dominant cases using PADF analysis. The results show that even minor deviations from uniform orientation produce the strongest angular correlation signals when the number of crystalline domains in the beam is large.

14.
J Colloid Interface Sci ; 611: 588-598, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34973655

RESUMO

Continuous flow injection is a key technology for serial crystallography measurements of protein crystals suspended in the lipidic cubic phase (LCP). To date, there has been little discussion in the literature regarding the impact of the injection process itself on the structure of the lipidic phase. This is despite the fact that the phase of the injection matrix is critical for the flow properties of the stream and potentially for sample stability. Here we report small-angle X-ray scattering measurements of a monoolein:water mixture during continuous delivery using a high viscosity injector. We observe both an alignment and modification of the LCP as a direct result of the injection process. The orientation of the cubic lattice with respect to the beam was estimated based on the anisotropy of the diffraction pattern and does not correspond to a single low order zone axis. The solvent fraction was also observed to impact the stability of the cubic phase during injection. In addition, depending on the distance traveled by the lipid after exiting the needle, the phase is observed to transition from a pure diamond phase (Pn3m) to a mixture containing both gyriod (Ia3d) and lamellar (Lα) phases. Finite element modelling of the observed phase behaviour during injection indicates that the pressure exerted on the lipid stream during extrusion accounts for the variations in the phase composition of the monoolein:water mixture.


Assuntos
Lipídeos , Água , Transição de Fase , Difração de Raios X
15.
J Phys Chem Lett ; : 5738-5743, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34132557

RESUMO

The chalcogens are known to react with one another to form interchalcogens, which exhibit a diverse range of bonding and conductive behavior due to the difference in electronegativity between the group members. Through a series of high-pressure diamond anvil experiments combined with density functional theory calculations, we report the synthesis of an S-Se hydride. At pressures above 4 GPa we observe the formation of a single solid composed of both H2Se and H2S molecular units. Further compression in a hydrogen medium leads to the formation of an alloyed compound (H2SxSe1-x)2H2, after which there is a sequence of pressure-induced phase transitions associated with the arrested rotation of molecules. At pressures above 50 GPa, there is a symmetrization of hydrogen bonds concomitantly with a closing band gap and increased reflectivity of the compound, indicative of a transition to a metallic state.

16.
Sci Adv ; 7(36): eabi9507, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516915

RESUMO

Hydrogen bond networks play a crucial role in biomolecules and molecular materials such as ices. How these networks react to pressure directs their properties at extreme conditions. We have studied one of the simplest hydrogen bond formers, hydrogen chloride, from crystallization to metallization, covering a pressure range of more than 2.5 million atmospheres. Following hydrogen bond symmetrization, we identify a previously unknown phase by the appearance of new Raman modes and changes to x-ray diffraction patterns that contradict previous predictions. On further compression, a broad Raman band supersedes the well-defined excitations of phase V, despite retaining a crystalline chlorine substructure. We propose that this mode has its origin in proton (H+) mobility and disorder. Above 100 GPa, the optical bandgap closes linearly with extrapolated metallization at 240(10) GPa. Our findings suggest that proton dynamics can drive changes in these networks even at very high densities.

17.
J Phys Chem Lett ; 12(20): 4910-4916, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34008402

RESUMO

By combining pressures up to 50 GPa and temperatures of 1200 K, we synthesize the novel barium hydride, Ba8H46, stable down to 27 GPa. We use Raman spectroscopy, X-ray diffraction, and first-principles calculations to determine that this compound adopts a highly symmetric Pm3¯n structure with an unusual 534:1 hydrogen-to-barium ratio. This singular stoichiometry corresponds to the well-defined type-I clathrate geometry. This clathrate consists of a Weaire-Phelan hydrogen structure with the barium atoms forming a topologically close-packed phase. In particular, the structure is formed by H20 and H24 clathrate cages showing substantially weakened H-H interactions. Density functional theory (DFT) demonstrates that cubic Pm3¯n Ba8H46 requires dynamical effects to stabilize the H20 and H24 clathrate cages.

18.
J Phys Chem Lett ; 11(15): 6420-6425, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32658481

RESUMO

The Co-H system has been investigated through high-pressure, high-temperature X-ray diffraction experiments combined with first-principles calculations. On compression of elemental cobalt in a hydrogen medium, we observe face-centered cubic cobalt hydride (CoH) and cobalt dihydride (CoH2) above 33 GPa. Laser heating CoH2 in a hydrogen matrix at 75 GPa to temperatures in excess of ∼800 K produces cobalt trihydride (CoH3) which adopts a primitive structure. Density functional theory calculations support the stability of CoH3. This phase is predicted to be thermodynamically stable at pressures above 18 GPa and to be a superconductor below 23 K. Theory predicts that this phase remains dynamically stable upon decompression above 11 GPa where it has a maximum Tc of 30 K.

19.
J Phys Chem Lett ; 11(9): 3390-3395, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32251597

RESUMO

When compressed in a matrix of solid hydrogen, many metals form compounds with increasingly high hydrogen contents. At high density, hydrogenic sublattices can emerge, which may act as low-dimensional analogues of atomic hydrogen. We show that at high pressures and temperatures, ruthenium forms polyhydride species that exhibit intriguing hydrogen substructures with counterintuitive electronic properties. Ru3H8 is synthesized from RuH in H2 at 50 GPa and at temperatures in excess of 1000 K, adopting a cubic structure with short H-H distances. When synthesis pressures are increased above 85 GPa, we observe RuH4 which crystallizes in a remarkable structure containing corner-sharing H6 octahedra. Calculations indicate this phase is semimetallic at 100 GPa.

20.
J Phys Chem Lett ; 10(5): 1109-1114, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30785288

RESUMO

Transition-metal nitrides have applications in a range of technological fields. Recent experiments have shown that new nitrogen-bearing compounds can be accessed through a combination of high temperatures and pressures, revealing a richer chemistry than was previously assumed. Here, we show that at pressures above 50 GPa and temperatures greater than 1500 K  elemental copper reacts with nitrogen, forming copper diazenide (CuN2). Through a combination of synchrotron X-ray diffraction and first-principles calculations we have explored the stability and electronic structure of CuN2. We find that the novel compound remains stable down to 25 GPa before decomposing to its constituent elements. Electronic structure calculations show that CuN2 is metallic and exhibits partially filled N2 antibonding orbitals, leading to an ambiguous electronic structure between Cu+/Cu2+. This leads to weak Cu-N bonds and the lowest bulk modulus observed for any transition-metal nitride.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa