Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mass Spectrom Rev ; 39(1-2): 35-54, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30024655

RESUMO

This review discusses the integration of liquid chromatography (LC), mass spectrometry (MS), and nuclear magnetic resonance (NMR) in the comprehensive analysis of small molecules from complex matrices. We first discuss the steps taken toward making the three technologies compatible, so as to create an efficient analytical platform. The development of online LC-MS-NMR, highlighted by successful applications in the profiling of highly concentrated analytes (LODs 10 µg) is discussed next. This is followed by a detailed overview of the alternative approaches that have been developed to overcome the challenges associated with online LC-MS-NMR that primarily stem from the inherently low sensitivity of NMR. These alternative approaches include the use of stop-flow LC-MS-NMR, loop collection of LC peaks, LC-MS-SPE-NMR, and offline NMR. The potential and limitations of all these approaches is discussed in the context of applications in various fields, including metabolomics and natural product discovery.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Animais , Produtos Biológicos/química , Desenho de Equipamento , Humanos , Espectroscopia de Ressonância Magnética/instrumentação , Espectrometria de Massas/instrumentação , Metabolômica/instrumentação , Metabolômica/métodos , Bibliotecas de Moléculas Pequenas/análise
2.
Anal Biochem ; 454: 23-32, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24657819

RESUMO

Liquid chromatography-coulometric array detection (LC-EC) is a sensitive, quantitative, and robust metabolomics profiling tool that complements the commonly used mass spectrometry (MS) and nuclear magnetic resonance (NMR)-based approaches. However, LC-EC provides little structural information. We recently demonstrated a workflow for the structural characterization of metabolites detected by LC-EC profiling combined with LC-electrospray ionization (ESI)-MS and microNMR. This methodology is now extended to include (i) gas chromatography (GC)-electron ionization (EI)-MS analysis to fill structural gaps left by LC-ESI-MS and NMR and (ii) secondary fractionation of LC-collected fractions containing multiple coeluting analytes. GC-EI-MS spectra have more informative fragment ions that are reproducible for database searches. Secondary fractionation provides enhanced metabolite characterization by reducing spectral overlap in NMR and ion suppression in LC-ESI-MS. The need for these additional methods in the analysis of the broad chemical classes and concentration ranges found in plasma is illustrated with discussion of four specific examples: (i) characterization of compounds for which one or more of the detectors is insensitive (e.g., positional isomers in LC-MS, the direct detection of carboxylic groups and sulfonic groups in (1)H NMR, or nonvolatile species in GC-MS), (ii) detection of labile compounds, (iii) resolution of closely eluting and/or coeluting compounds, and (iv) the capability to harness structural similarities common in many biologically related, LC-EC-detectable compounds.


Assuntos
Cromatografia Líquida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Microtecnologia/métodos , Humanos , Indóis/sangue , Indóis/metabolismo
3.
J Lipid Res ; 54(10): 2623-35, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23690505

RESUMO

The interaction of dietary fats and carbohydrates on liver mitochondria were examined in male FBNF1 rats fed 20 different low-fat isocaloric diets. Animal growth rates and mitochondrial respiratory parameters were essentially unaffected, but mass spectrometry-based mitochondrial lipidomics profiling revealed increased levels of cardiolipins (CLs), a family of phospholipids essential for mitochondrial structure and function, in rats fed saturated or trans fat-based diets with a high glycemic index. These mitochondria showed elevated monolysocardiolipins (a CL precursor/product of CL degradation), elevated ratio of trans-phosphocholine (PC) (18:1/18:1) to cis-PC (18:1/18:1) (a marker of thiyl radical stress), and decreased ubiquinone Q9; the latter two of which imply a low-grade mitochondrial redox abnormality. Extended analysis demonstrated: i) dietary fats and, to a lesser extent, carbohydrates induce changes in the relative abundance of specific CL species; ii) fatty acid (FA) incorporation into mature CLs undergoes both positive (>400-fold) and negative (2.5-fold) regulation; and iii) dietary lipid abundance and incorporation of FAs into both the CL pool and specific mature tetra-acyl CLs are inversely related, suggesting previously unobserved compensatory regulation. This study reveals previously unobserved complexity/regulation of the central lipid in mitochondrial metabolism.


Assuntos
Cardiolipinas/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Mitocôndrias Hepáticas/metabolismo , Animais , Respiração Celular , Dieta , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-6/administração & dosagem , Índice Glicêmico , Fígado/metabolismo , Masculino , Estresse Oxidativo , Consumo de Oxigênio , Ratos , Ubiquinona/metabolismo
4.
Anal Chem ; 85(2): 1114-23, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23210743

RESUMO

Robust methodologies for the analysis of fecal material will facilitate the understanding of gut (patho)physiology and its role in health and disease and will help improve care for individual patients, especially high-risk populations, such as premature infants. Because lipidomics offers a biologically and analytically attractive approach, we developed a simple, sensitive, and quantitatively precise method for profiling intact lipids in fecal material. The method utilizes two separate, complementary extraction chemistries, dichloromethane (DCM) and a methyl tert-butyl ether/hexafluoroisopropanol (MTBE) mixture, alone or with high pressure cycling. Extracts were assessed by liquid chromatography-high-resolution mass spectrometry-based profiling with all ion higher energy collisional dissociation fragmentation in both positive and negative ionization modes. This approach provides both class-specific and lipid-specific fragments, enhancing lipid characterization. Solvents preferentially extracted lipids based on hydrophobicity. More polar species preferred MTBE; more hydrophobic compounds preferred DCM. Pressure cycling differentially increased the yield of some lipids. The platform enabled analysis of >500 intact lipophilic species with over 300 lipids spanning 6 LIPID MAPS categories identified in the fecal matter from premature infants. No previous report exists that provides these data; thus, this study represents a new paradigm for assessing nutritional health, inflammation, and infectious disease in vulnerable populations.


Assuntos
Lipídeos/análise , Cromatografia Líquida de Alta Pressão , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lactente , Espectrometria de Massas , Éteres Metílicos/química , Cloreto de Metileno/química , Propanóis/química
5.
Metabolites ; 13(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37233689

RESUMO

Untargeted and targeted approaches are the traditional metabolomics workflows acquired for a wider understanding of the metabolome under focus. Both approaches have their strengths and weaknesses. The untargeted, for example, is maximizing the detection and accurate identification of thousands of metabolites, while the targeted is maximizing the linear dynamic range and quantification sensitivity. These workflows, however, are acquired separately, so researchers compromise either a low-accuracy overview of total molecular changes (i.e., untargeted analysis) or a detailed yet blinkered snapshot of a selected group of metabolites (i.e., targeted analysis) by selecting one of the workflows over the other. In this review, we present a novel single injection simultaneous quantitation and discovery (SQUAD) metabolomics that combines targeted and untargeted workflows. It is used to identify and accurately quantify a targeted set of metabolites. It also allows data retro-mining to look for global metabolic changes that were not part of the original focus. This offers a way to strike the balance between targeted and untargeted approaches in one single experiment and address the two approaches' limitations. This simultaneous acquisition of hypothesis-led and discovery-led datasets allows scientists to gain more knowledge about biological systems in a single experiment.

6.
Anal Chem ; 84(13): 5509-17, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22656324

RESUMO

The increased presence of synthetic trans fatty acids into western diets has been shown to have deleterious effects on physiology and raising an individual's risk of developing metabolic disease, cardiovascular disease, and stroke. The importance of these fatty acids for health and the diversity of their (patho) physiological effects suggest that not only should the free trans fatty acids be studied but also monitoring the presence of these fats into the side chains of biological lipids, such as glycerophospholipids, is also essential. We developed a high resolution LC-MS method that quantitatively monitors the major lipid classes found in biospecimens in an efficient, sensitive, and robust manner while also characterizing individual lipid side chains through the use of high energy collisional dissociation (HCD) fragmentation and chromatographic alignment. We herein show how this previously described reversed phase method can baseline separate the cis-trans isomers of phosphatidylglycerol and phosphatidylcholine (PC) with two 18:1 side chains, in both positive and negative mode, as neat solutions and when spiked into a biological matrix. Endogenous PC (18:1/18:1)-cis and PC (18:1/18:1)-trans isomers were examined in mitochondrial and serum profiling studies, where rats were fed diets enriched in either trans 18:1 fatty acids or cis 18:1 fatty acids. In this study, we determined the cis:trans isomer ratios of PC (18:1/18:1) and related this ratio to dietary composition. This generalized LC-MS method enables the monitoring of trans fats in biological lipids in the context of a nontargeted method, allowing for relative quantitation and enhanced identification of unknown lipids in complex matrixes.


Assuntos
Cromatografia de Fase Reversa , Fosfatidilcolinas/isolamento & purificação , Fosfatidilgliceróis/isolamento & purificação , Animais , Cromatografia de Fase Reversa/métodos , Dieta , Radicais Livres/química , Isomerismo , Masculino , Espectrometria de Massas/métodos , Mitocôndrias/química , Fosfatidilcolinas/sangue , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Ratos , Ratos Endogâmicos F344
7.
Anal Chem ; 84(22): 9889-98, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23106399

RESUMO

Liquid chromatography (LC) separation combined with electrochemical coulometric array detection (EC) is a sensitive, reproducible, and robust technique that can detect hundreds of redox-active metabolites down to the level of femtograms on column, making it ideal for metabolomics profiling. EC detection cannot, however, structurally characterize unknown metabolites that comprise these profiles. Several aspects of LC-EC methods prevent a direct transfer to other structurally informative analytical methods, such as LC-MS and NMR. These include system limits of detection, buffer requirements, and detection mechanisms. To address these limitations, we developed a workflow based on the concentration of plasma, metabolite extraction, and offline LC-UV fractionation. Pooled human plasma was used to provide sufficient material necessary for multiple sample concentrations and platform analyses. Offline parallel LC-EC and LC-MS methods were established that correlated standard metabolites between the LC-EC profiling method and the mass spectrometer. Peak retention times (RT) from the LC-MS and LC-EC system were linearly related (r(2) = 0.99); thus, LC-MS RTs could be directly predicted from the LC-EC signals. Subsequent offline microcoil-NMR analysis of these collected fractions was used to confirm LC-MS characterizations by providing complementary, structural data. This work provides a validated workflow that is transferrable across multiple platforms and provides the unambiguous structural identifications necessary to move primary mathematically driven LC-EC biomarker discovery into biological and clinical utility.


Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , Análise Química do Sangue/métodos , Cromatografia Líquida/métodos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Raios Ultravioleta , Eletroquímica , Feminino , Humanos , Masculino , Análise Multivariada
8.
Anal Chem ; 83(3): 940-9, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21192696

RESUMO

A liquid chromatography-mass spectrometry (LC-MS) method was used for separation of lipid classes as well as both qualitative and semiquantitative detection of individual lipids in biological samples. Data were acquired using high-resolution full-scan MS and high-energy collisional dissociation (HCD) all ion fragmentation. The method was evaluated for efficient separation and detection in both positive and negative ionization mode using standards spanning six lipid classes. Platform linearity and robustness, related to the mitochondrial lipid cardiolipin (CL), were assessed using extracted ion chromatograms with mass tolerance windows of 5 ppm or less from full scan exact mass measurements. The platform CL limit of detection was determined to be 5 pmol (0.9 µM) on the column, with mass accuracy <1.5 ppm, retention time coefficients of variation (CV) < 0.5%, and area CV < 13%. This mass accuracy was critical to the identification of unknown CL species in mitochondria samples, through the elimination of false positives. In addition to detection and relative quantitation of CL species in mitochondria, CL structures were characterized through the use of alternating HCD scans at different energies to produce diagnostic fragmentations on all ions in the analysis. The developed lipid profiling method was applied to mitochondrial samples from an animal study related to the linkages between diet, mitochondrial function, and disease. The analysis identified 28 unique CL species and two monolysocardiolipin species that are often associated with mitochondrial stress and dysfunction.


Assuntos
Cardiolipinas/análise , Cromatografia Líquida/métodos , Lisofosfolipídeos/análise , Espectrometria de Massas/métodos , Mitocôndrias Hepáticas/química , Animais , Lipídeos/análise , Masculino , Estrutura Molecular , Ratos
9.
Anal Chem ; 83(17): 6648-57, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21774539

RESUMO

There is a growing need both clinically and experimentally to improve the characterization of blood lipids. A liquid chromatography-mass spectrometry (LC-MS) method, developed for the qualitative and semiquantitative detection of lipids in biological samples and previously validated in mitochondrial samples, was now evaluated for the profiling of serum lipids. Data were acquired using high-resolution, full scan MS and high-energy, collisional dissociation (HCD), all ion fragmentation. The method was designed for efficient separation and detection in both positive and negative ionization mode and evaluated using standards spanning seven lipid classes. Platform performance, related to the identification and characterization of serum triglycerides (TGs), was assessed using extracted ion chromatograms with mass tolerance windows of 5 ppm or less from full scan exact mass measurements determined using SIEVE nondifferential LC-MS analysis software. The platform showed retention time coefficients of variation (CV) of <0.3%, mass accuracy values of <2 ppm error, and peak area CV of <13%, with the majority of that error coming from sample preparation and extraction rather than the LC-MS analysis, and linearity was shown to be over 4 orders of magnitude (r(2) = 0.999) for the standard TG (15:0)(3) spiked into serum. Instrument mass accuracy and precision were critical to the identification of unknown TG species, in part because these parameters enabled us to reduce false positives. In addition to detection and relative quantitation of TGs in serum, TG structures were characterized through the use of alternating HCD scans at different energies to produce diagnostic fragmentations on all ions in the analysis. The lipidomics method was applied to serum samples from 192 rats maintained on diets differing in macronutrient composition. The analysis identified 86 TG species with 81 unique masses that varied over 3.5 orders of magnitude and showed diet-dependency, consistent with TGs linking diet and disease risk.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Triglicerídeos/sangue , Animais , Lipídeos/sangue , Masculino , Ratos , Ratos Endogâmicos F344 , Software
10.
Methods Mol Biol ; 2275: 379-391, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34118051

RESUMO

Untargeted lipidomics profiling by liquid chromatography -mass spectrometry (LC-MS) allows researchers to observe the occurrences of lipids in a biological sample without showing intentional bias to any specific class of lipids and allows retrospective reanalysis of data collected. Typically, and in the specific method described, a general extraction method followed by LC separation is used to achieve nonspecific class coverage of the lipidome prior to high resolution accurate mass (HRAM) MS detection . Here we describe a workflow including the isolation of mitochondria from liver tissue, followed by mitochondrial lipid extraction and the LC-MS conditions used for data acquisition. We also highlight how, in this method, all ion fragmentation can be used to identify species of lower abundances, often missed by data dependent fragmentation techniques. Here we describe the isolation of mitochondria from liver tissue, followed by mitochondrial lipid extraction and the LC-MS conditions used for data acquisition.


Assuntos
Lipidômica/métodos , Lisofosfatidilcolinas/análise , Mitocôndrias Hepáticas/química , Animais , Cromatografia Líquida , Técnicas de Inativação de Genes , Camundongos , Ratos , Fluxo de Trabalho , alfa-Sinucleína/genética
11.
JCI Insight ; 3(21)2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30385734

RESUMO

Hypertriglyceridemia is an independent risk factor for cardiovascular disease. Dietary interventions based on protein restriction (PR) reduce circulating triglycerides (TGs), but underlying mechanisms and clinical relevance remain unclear. Here, we show that 1 week of a protein-free diet without enforced calorie restriction significantly lowered circulating TGs in both lean and diet-induced obese mice. Mechanistically, the TG-lowering effect of PR was due, in part, to changes in very low-density lipoprotein (VLDL) metabolism both in liver and peripheral tissues. In the periphery, PR stimulated VLDL-TG consumption by increasing VLDL-bound APOA5 expression and promoting VLDL-TG hydrolysis and clearance from circulation. The PR-mediated increase in Apoa5 expression was controlled by the transcription factor CREBH, which coordinately regulated hepatic expression of fatty acid oxidation-related genes, including Fgf21 and Ppara. The CREBH-APOA5 axis activation upon PR was intact in mice lacking the GCN2-dependent amino acid-sensing arm of the integrated stress response. However, constitutive hepatic activation of the amino acid-responsive kinase mTORC1 compromised CREBH activation, leading to blunted APOA5 expression and PR-recalcitrant hypertriglyceridemia. PR also contributed to hypotriglyceridemia by reducing the rate of VLDL-TG secretion, independently of activation of the CREBH-APOA5 axis. Finally, a randomized controlled clinical trial revealed that 4-6 weeks of reduced protein intake (7%-9% of calories) decreased VLDL particle number, increased VLDL-bound APOA5 expression, and lowered plasma TGs, consistent with mechanistic conservation of PR-mediated hypotriglyceridemia in humans with translational potential as a nutraceutical intervention for dyslipidemia.


Assuntos
Dieta com Restrição de Proteínas/efeitos adversos , Lipoproteínas VLDL/sangue , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Triglicerídeos/sangue , Animais , Apolipoproteína A-V , Apolipoproteínas/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Dieta com Restrição de Proteínas/métodos , Feminino , Humanos , Hidrólise , Hipertrigliceridemia/complicações , Hipertrigliceridemia/epidemiologia , Metabolismo dos Lipídeos , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Proteínas Serina-Treonina Quinases/deficiência , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Risco , Triglicerídeos/metabolismo
12.
Methods Mol Biol ; 1264: 441-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25631033

RESUMO

Untargeted lipidomics profiling by liquid chromatography-mass spectrometry (LC-MS) allows researchers to observe the occurrences of lipids in a biological sample without showing intentional bias to any specific class of lipids and allows retrospective reanalysis of data collected. Typically, and in the specific method described, a general extraction method followed by LC separation is used to achieve nonspecific class coverage of the lipidome prior to high-resolution accurate mass (HRAM) MS detection. Here we describe a workflow including the isolation of mitochondria from liver tissue, followed by mitochondrial lipid extraction and the LC-MS conditions used for data acquisition. We also highlight how, in this method, all-ion fragmentation can be used to identify species of lower abundances, often missed by data-dependent fragmentation techniques. Here we describe the isolation of mitochondria from liver tissue, followed by mitochondrial lipid extraction and the LC-MS conditions used for data acquisition.


Assuntos
Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Metabolismo dos Lipídeos , Fígado/metabolismo , Metaboloma , Mitocôndrias Hepáticas/metabolismo , Animais , Fracionamento Celular , Metabolômica/métodos , Ratos
13.
Metabolomics ; 9(1 Suppl): 67-83, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23646040

RESUMO

Lipids play multiple roles essential for proper mitochondrial function, from their involvement in membrane structure and fluidity, cellular energy storage, and signaling. Lipids are also major targets for reactive species, and their peroxidation byproducts themselves mediate further damage. Thousands of lipid species, from multiple classes and categories, are involved in these processes, suggesting lipid quantitative and structural analysis can help provide a better understanding of mitochondrial physiological status. Due to the diversity of lipids that contribute to and reflect mitochondrial function, analytical methods should ideally cover a wide range of lipid classes, and yield both quantitative and structural information. We developed a high resolution LC-MS method that is able to monitor the major lipid classes found in biospecimens (ie. biofluids, cells and tissues) with relative quantitation in an efficient, sensitive, and robust manner while also characterizing individual lipid side-chains, by all ion HCD fragmentation and chromatographic alignment. This method was used to profile the liver mitochondrial lipids from 192 rats undergoing a dietary macronutrient study in which changes in mitochondria function are related to changes in the major fat and glycemic index component of each diet. A total of 381 unique lipids, spanning 5 of the major LIPID MAPS defined categories, including fatty acyls, glycerophospholipids, glycerolipids, sphingolipids and prenols, were identified in mitochondria using the non-targeted LC-MS analysis in both positive and negative mode. The intention of this report is to show the breadth of this non-targeted LC-MS profiling method with regards to its ability to profile, identify and characterize the mitochondrial lipidome and the details of this will be discussed.

14.
Anal Methods ; 4(5): 1315-1325, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22707983

RESUMO

Plant cell and tissue cultures are a scalable and controllable alternative to whole plants for obtaining natural products of medical relevance. Cultures can be optimized for high yields of desired metabolites using rapid profiling assays such as HPLC. We describe an approach to establishing a rapid assay for profiling cell culture expression systems using a novel microscale LC-UV-MS-NMR platform, designed to acquire both MS and NMR each at their optimal sensitivity, by using nanosplitter MS from 4 mm analytical HPLC columns, and offline microdroplet NMR. The approach is demonstrated in the analysis of elicited Eschscholzia californica cell cultures induced with purified yeast extract to produce benzophenanthridine alkaloids. Preliminary HPLC-UV provides an overview of the changes in the production of alkaloids with time after elicitation. At the time point corresponding to the production of the most alkaloids, the integrated LC-MS-microcoil NMR platform is used for structural identification of extracted alkaloids. Eight benzophenanthridine alkaloids were identified at the sub-microgram level. This paper demonstrates the utility of the nanosplitter LC-MS/microdroplet NMR platform when establishing cell culture expression systems.

15.
J Lipids ; 2012: 797105, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22970378

RESUMO

Omega-3 polyunsaturated fatty acids (n-3 PUFAs) block apoptotic neuronal cell death and are strongly neuroprotective in acute and chronic neurodegeneration. Theoretical considerations, indirect data, and consideration of parsimony lead to the hypothesis that modulation of mitochondrial pathway(s) underlies at least some of the neuroprotective effects of n-3 PUFAs. We therefore systematically tested this hypothesis on healthy male FBFN1 rats fed for four weeks with isocaloric, 10% fat-containing diets supplemented with 1, 3, or 10% fish oil (FO). High resolution mass spectrometric analysis confirmed expected diet-driven increases in docosahexaenoic acid (DHA, 22:6, n-3) and eicosapentaenoic acid (EPA, 20:5, n-3) in sera, liver and nonsynaptosomal brain mitochondria. We further evaluated the resistance of brain and liver mitochondria to Ca(2+) overload and prooxidants. Under these conditions, neither mitochondrial resistance to Ca(2+) overload and prooxidants nor mitochondrial physiology is altered by diet, despite the expected incorporation of DHA and EPA in mitochondrial membranes and plasma. Collectively, the data eliminate one of the previously proposed mechanism(s) that n-3 PUFA induced augmentation of mitochondrial resistance to the oxidant/calcium-driven dysfunction. These data furthermore allow us to define a specific series of follow-up experiments to test related hypotheses about the effect of n-3 PUFAs on brain mitochondria.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa