Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 11(3): 338-46, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24509633

RESUMO

Optogenetic tools enable examination of how specific cell types contribute to brain circuit functions. A long-standing question is whether it is possible to independently activate two distinct neural populations in mammalian brain tissue. Such a capability would enable the study of how different synapses or pathways interact to encode information in the brain. Here we describe two channelrhodopsins, Chronos and Chrimson, discovered through sequencing and physiological characterization of opsins from over 100 species of alga. Chrimson's excitation spectrum is red shifted by 45 nm relative to previous channelrhodopsins and can enable experiments in which red light is preferred. We show minimal visual system-mediated behavioral interference when using Chrimson in neurobehavioral studies in Drosophila melanogaster. Chronos has faster kinetics than previous channelrhodopsins yet is effectively more light sensitive. Together these two reagents enable two-color activation of neural spiking and downstream synaptic transmission in independent neural populations without detectable cross-talk in mouse brain slice.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Luz , Neurônios/fisiologia , Animais , Proteínas de Drosophila/genética , Dados de Sequência Molecular , Optogenética , Rodopsina/genética , Rodopsina/metabolismo
3.
J Neurosci ; 30(4): 1463-70, 2010 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-20107073

RESUMO

AMPA receptors (AMPARs) are tetrameric ligand-gated ion channels that couple the energy of glutamate binding to the opening of a transmembrane channel. Crystallographic and electrophysiological analysis of AMPARs has suggested a coupling between (1) cleft closure in the bilobate ligand-binding domain (LBD), (2) the resulting separation of transmembrane helix attachment points across subunit dimers, and (3) agonist efficacy. In general, more efficacious agonists induce greater degrees of cleft closure and transmembrane separation than partial agonists. Several apparent violations of the cleft-closure/efficacy paradigm have emerged, although in all cases, intradimer separation remains as the driving force for channel opening. Here, we examine the structural basis of partial agonism in GluA4 AMPARs. We find that the L651V substitution enhances the relative efficacy of kainate without increasing either LBD cleft closure or transmembrane separation. Instead, the conformational change relative to the wild-type:kainate complex involves a twisting motion with the efficacy contribution opposite from that expected based on previous analyses. As a result, channel opening may involve transmembrane rearrangements with a significant rotational component. Furthermore, a two-dimensional analysis of agonist-induced GluA2 LBD motions suggests that efficacy is not a linearly varying function of lobe 2 displacement vectors, but is rather determined by specific conformational requirements of the transmembrane domains.


Assuntos
Agonistas de Aminoácidos Excitatórios/química , Agonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Receptores de AMPA/agonistas , Receptores de AMPA/química , Transmissão Sináptica/fisiologia , Sítios de Ligação , Linhagem Celular , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cristalografia por Raios X , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Canais Iônicos/agonistas , Canais Iônicos/química , Ácido Caínico/farmacologia , Ligantes , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/fisiologia , Proteômica , Receptores de AMPA/metabolismo
4.
Biochemistry ; 47(52): 13831-41, 2008 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-19102704

RESUMO

AMPA receptors are glutamate-gated ion channels that are essential mediators of synaptic signals in the central nervous system. They form tetramers that are assembled as combinations of subunits GluR1-4, each of which contains a ligand-binding domain (LBD). Crystal structures of the GluR2 LBD have revealed an agonist-binding cleft, which is located between two lobes and which acts like a Venus flytrap. In general, agonist efficacy is correlated with the extent of cleft closure. However, recent observations show that cleft closure is not the sole determinant of the relative efficacy for glutamate receptors. In addition, these studies have focused on the GluR2 subunit, which is the specific target of a physiologically important RNA-editing modification in vivo. We therefore sought to test the generality of the cleft closure-efficacy correlation for other AMPA-R subunits. Here, we present crystal structures of the GluR4(flip) LBD in complex with both full and partial agonists. As for GluR2, both agonists stabilize a closed-cleft conformation, and the partial agonist induces a smaller cleft closure than the full agonist. However, a detailed analysis of LBD-kainate interactions reveals the importance of subtle backbone conformational changes in the ligand-binding pocket in determining the magnitude of agonist-associated conformational changes. Furthermore, the GluR4 subunit exhibits a different correlation between receptor activation and LBD cleft closure than does GluR2.


Assuntos
Receptores de AMPA/agonistas , Receptores de AMPA/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Ligantes , Ligação Proteica , Conformação Proteica , Ratos , Receptores de AMPA/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa