Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 20(10): 4886-4892, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473931

RESUMO

Protein phosphorylation in prokaryotes has gained more attention in recent years as several studies linked it to regulatory and signaling functions, indicating importance similar to protein phosphorylation in eukaryotes. Studies on bacterial phosphorylation have so far been conducted using manual or HPLC-supported phosphopeptide enrichment, whereas automation of phosphopeptide enrichment has been established in eukaryotes, allowing for high-throughput sampling. To facilitate the prospect of studying bacterial phosphorylation on a systems level, we here established an automated Ser/Thr/Tyr phosphopeptide enrichment workflow on the Agilent AssayMap platform. We present optimized buffer conditions for TiO2 and Fe(III)-NTA-IMAC cartridge-based enrichment and the most advantageous, species-specific loading amounts for Streptococcus pyogenes, Listeria monocytogenes, and Bacillus subtilis. For higher sample amounts (≥250 µg), we observed superior performance of the Fe(III)-NTA cartridges, whereas for lower sample amounts (≤100 µg), TiO2-based enrichment is equally efficient. Both cartridges largely enriched the same set of phosphopeptides, suggesting no improvement of peptide yield by the complementary use of the two cartridges. Our data represent, to the best of our knowledge, the largest phosphoproteome identified in a single study for each of these bacteria.


Assuntos
Cromatografia de Afinidade , Fosfopeptídeos , Bacillus subtilis/metabolismo , Listeria monocytogenes/metabolismo , Fosfopeptídeos/metabolismo , Fosforilação , Proteoma/metabolismo , Streptococcus pyogenes/metabolismo , Titânio
3.
mSystems ; 6(4): e0021521, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34342529

RESUMO

The cellular proteome comprises all proteins expressed at a given time and defines an organism's phenotype under specific growth conditions. The proteome is shaped and remodeled by both protein synthesis and protein degradation. Here, we developed a new method which combines metabolic and chemical isobaric peptide labeling to simultaneously determine the time-resolved protein decay and de novo synthesis in an intracellular human pathogen. We showcase this method by investigating the Listeria monocytogenes proteome in the presence and absence of the AAA+ chaperone protein ClpC. ClpC associates with the peptidase ClpP to form an ATP-dependent protease complex and has been shown to play a role in virulence development in L. monocytogenes. However, the mechanism by which ClpC is involved in the survival and proliferation of intracellular L. monocytogenes remains elusive. Employing this new method, we observed extensive proteome remodeling in L. monocytogenes upon interaction with the host, supporting the hypothesis that ClpC-dependent protein degradation is required to initiate bacterial adaptation mechanisms. We identified more than 100 putative ClpC target proteins through their stabilization in a clpC deletion strain. Beyond the identification of direct targets, we also observed indirect effects of the clpC deletion on the protein abundance in diverse cellular and metabolic pathways, such as iron acquisition and flagellar assembly. Overall, our data highlight the crucial role of ClpC for L. monocytogenes adaptation to the host environment through proteome remodeling. IMPORTANCE Survival and proliferation of pathogenic bacteria inside the host depend on their ability to adapt to the changing environment. Profiling the underlying changes on the bacterial proteome level during the infection process is important to gain a better understanding of the pathogenesis and the host-dependent adaptation processes. The cellular protein abundance is governed by the interplay between protein synthesis and decay. The direct readout of these events during infection can be accomplished using pulsed stable-isotope labeling by amino acids in cell culture (SILAC). Combining this approach with tandem-mass-tag (TMT) labeling enabled multiplexed and time-resolved bacterial proteome quantification during infection. Here, we applied this integrated approach to investigate protein turnover during the temporal progression of adaptation of the human pathogen L. monocytogenes to its host on a system-wide scale. Our experimental approach can easily be transferred to probe the proteome remodeling in other bacteria under a variety of perturbations.

4.
Front Mol Biosci ; 4: 44, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28748186

RESUMO

Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis. We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa