Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Annu Rev Biomed Eng ; 25: 23-49, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36854261

RESUMO

The need for hydration monitoring is significant, especially for the very young and elderly populations who are more vulnerable to becoming dehydrated and suffering from the effects that dehydration brings. This need has been among the drivers of considerable effort in the academic and commercial sectors to provide a means for monitoring hydration status, with a special interest in doing so outside the hospital or clinical setting. This review of emerging technologies provides an overview of many technology approaches that, on a theoretical basis, have sensitivity to water and are feasible as a routine measurement. We review the evidence of technical validation and of their use in humans. Finally, we highlight the essential need for these technologies to be rigorously evaluated for their diagnostic potential, as a necessary step to meet the need for hydration monitoring outside of the clinical environment.


Assuntos
Desidratação , Água , Humanos , Idoso , Desidratação/diagnóstico
2.
J Vis ; 23(11): 72, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37733506

RESUMO

Scleral biomechanics plays a key role in the understanding of myopia progression. In this study, we characterized the elastic properties of sclera using an air-coupled ultrasonic (ACUS) optical coherence elastography (OCE) system. New Zealand rabbit eyes (n=7) were measured (<24hr postmortem) in four scleral locations: superior/inferior temporal (ST, IT), and superior/inferior nasal (SN, IN) maintaining an intraocular pressure of 15 mmHg. Elastic waves were induced in the sclera, and wave propagation velocity and shear modulus were measured along two directions: circumferential (superior-inferior) and meridional (nasal-temporal). Wave velocity in scleral tissue ranged from 6 to 24 m/s and shear modulus from 11 to 150 kPa. Velocity was significantly higher (p<.001) in the circumferential vs. meridional directions in the following locations: ST:15.83±2.85 vs 9.43±1.68 m/s, IT:15.00±3.98 vs 8.93±1.53 m/s; SN:16.79±4.30 vs 9.27±1.47 m/s; and IN:13.92±3.85 vs 8.57±1.46 m/s. The average shear modulus in the circumferential was also significantly higher (p<.001) than in the meridional direction for all locations: 65.37±6.04 vs 22.55±1.36 kPa. These results show that the rabbit sclera is mechanically anisotropic with higher rigidity in the circumferential direction compared to the meridional direction. ACUS-OCE is a promising non-invasive method to quantify the biomechanical changes in scleral tissue for future studies involving myopia treatments.


Assuntos
Técnicas de Imagem por Elasticidade , Meridianos , Miopia , Animais , Coelhos , Ultrassom , Esclera/diagnóstico por imagem , Anisotropia , Miopia/diagnóstico por imagem
3.
J Vis ; 23(11): 38, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37733540

RESUMO

Progression of myopia is usually accompanied by axial overgrowth of the eyeball, which affects scleral biomechanics (BM). To study scleral biomechanics, we propose the use of air-puff deformation swept-source OCT imaging. Air-puff deformation imaging was performed at different sites of ex vivo porcine (n=5) and rabbit (n=3) eyes, (<24hr postmortem): Nasal/temporal equatorial and posterior sclera (NE, NP, TE, TP), superior (S) and inferior (I) sclera, and cornea (C). Intraocular pressure was kept at 15mmHg. Deformation data were used as input to inverse finite element model (FEM) algorithms to reconstruct BM properties. Experimental deformation amplitudes showed dependence on the animal model, with porcine scleras exhibiting greater inter-site variation (displacement of S, I was up to four times greater than that of N, T), while rabbit scleras exhibited at most 40% of displacement differences between all sites. Both models showed significant (p<.001) differences in the temporal deformation profile between sclera and (C), but similarities in all scleral locations, suggesting that the scleral temporal profile is independent of scleral thickness variations. The FEM estimated an elastic modulus of 1.84 ± 0.30 MPa (I) to 6.04 ± 2.11 MPa (TE) for the porcine sclera. The use of scleral air-puff imaging is promising for noninvasive investigation of structural changes in the sclera associated with myopia and for monitoring possible modulation of scleral stiffness with myopia treatment.


Assuntos
Miopia , Tomografia de Coerência Óptica , Animais , Coelhos , Suínos , Esclera/diagnóstico por imagem , Algoritmos , Fenômenos Biomecânicos , Miopia/diagnóstico por imagem
5.
Ophthalmology ; 121(1): 45-55, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23948466

RESUMO

OBJECTIVE: To quantify 3-dimensionally the anterior segment geometry, biometry, and lens position and alignment in patients before and after implantation of the Crystalens-AO (Bausch & Lomb, Rochester, NY) accommodating intraocular lens (A-IOL). DESIGN: Prospective, observational study. PARTICIPANTS: Ten patients (20 eyes) with cataract before and after implantation of the Crystalens-AO A-IOL. METHODS: Custom full anterior segment 3-dimensional (3-D) spectral optical coherence tomography (OCT) provided with quantification tools was used to image the cornea, iris, and natural lens preoperatively and intraocular lens postoperatively. Measurements were obtained under phenylephrine preoperatively and under natural viewing conditions and phenylephrine (for accommodative efforts ranging from 0 to 2.5 diopters [D]) and pilocarpine postoperatively. MAIN OUTCOME MEASURES: Three-dimensional quantitative anterior segment images, corneal geometry and power, anterior chamber depth (ACD), lens thickness, pupil diameter, A-IOL shift with accommodative effort or drug-induced accommodation, and A-IOL alignment. RESULTS: Crystalline lens and IOLs were visualized and quantified 3-dimensionally. The average ACD were 2.64±0.24 and 3.65±0.35 mm preoperatively and postoperatively (relaxed state), respectively, and they were statistically significantly correlated (although their difference was not statistically correlated with lens thickness). The A-IOL did not shift systematically with accommodative effort, with 9 lenses moving forward and 11 lenses moving backward (under natural conditions). The average A-IOL shift under stimulated accommodation with pilocarpine was -0.02±0.20 mm. The greatest forward shift occurred bilaterally in 1 patient (-0.49 mm in the right eye and -0.52 mm in the left eye, under pilocarpine). The high right/left symmetry in the horizontal tilt of the crystalline lens is disrupted on IOL implantation. Accommodative IOLs tend to be slightly more vertically tilted than the crystalline lens, with increasing tendency with accommodative effort. Two subjects showed postoperative IOL tilts >9 degrees. Changes in pupillary diameter correlated with pilocarpine-induced A-IOL axial shift. Intermediate accommodative demands (1.25 D) elicited the greater shifts in axial A-IOL location and tilt and pupil diameter. CONCLUSIONS: Quantitative 3-D anterior segment OCT allows full evaluation of the geometry of eyes implanted with A-IOLs preoperatively and postoperatively. High-resolution OCT measurements of the Crystalens 3-D positioning revealed small (and in many patients backward) A-IOL axial shifts with both natural or drug-induced accommodation, as well as tilt changes with respect to natural lens and accommodative effort.


Assuntos
Acomodação Ocular/fisiologia , Segmento Anterior do Olho/patologia , Migração do Implante de Lente Intraocular/diagnóstico , Lentes Intraoculares , Facoemulsificação , Tomografia de Coerência Óptica , Acomodação Ocular/efeitos dos fármacos , Idoso , Biometria , Feminino , Humanos , Imageamento Tridimensional , Implante de Lente Intraocular , Masculino , Mióticos/administração & dosagem , Midriáticos/administração & dosagem , Fenilefrina/administração & dosagem , Pilocarpina/administração & dosagem , Período Pós-Operatório , Período Pré-Operatório , Estudos Prospectivos , Desenho de Prótese , Pupila/efeitos dos fármacos
6.
Biomed Opt Express ; 14(2): 608-626, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36874490

RESUMO

Quantifying the full 3-D shape of the human crystalline lens is important for improving intraocular lens power or sizing calculations in treatments of cataract and presbyopia. In a previous work we described a novel method for the representation of the full shape of the ex vivo crystalline lens called eigenlenses, which proved more compact and accurate than compared state-of-the art methods of crystalline lens shape quantification. Here we demonstrate the use of eigenlenses to estimate the full shape of the crystalline lens in vivo from optical coherence tomography images, where only the information visible through the pupil is available. We compare the performance of eigenlenses with previous methods of full crystalline lens shape estimation, and demonstrate an improvement in repeatability, robustness and use of computational resources. We found that eigenlenses can be used to describe efficiently the crystalline lens full shape changes with accommodation and refractive error.

7.
Biomed Opt Express ; 12(10): 6341-6359, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34745741

RESUMO

We introduce a method to estimate the biomechanical properties of the porcine sclera in intact eye globes ex vivo, using optical coherence tomography that is coupled with an air-puff excitation source, and inverse optimization techniques based on finite element modeling. Air-puff induced tissue deformation was determined at seven different locations on the ocular globe, and the maximum apex deformation, the deformation velocity, and the arc-length during deformation were quantified. In the sclera, the experimental maximum deformation amplitude and the corresponding arc length were dependent on the location of air-puff excitation. The normalized temporal deformation profile of the sclera was distinct from that in the cornea, but similar in all tested scleral locations, suggesting that this profile is independent of variations in scleral thickness. Inverse optimization techniques showed that the estimated scleral elastic modulus ranged from 1.84 ± 0.30 MPa (equatorial inferior) to 6.04 ± 2.11 MPa (equatorial temporal). The use of scleral air-puff imaging holds promise for non-invasively investigating the structural changes in the sclera associated with myopia and glaucoma, and for monitoring potential modulation of scleral stiffness in disease or treatment.

8.
Sci Transl Med ; 13(581)2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597262

RESUMO

A reported 96,480 people were diagnosed with melanoma in the United States in 2019, leading to 7230 reported deaths. Early-stage identification of suspicious pigmented lesions (SPLs) in primary care settings can lead to improved melanoma prognosis and a possible 20-fold reduction in treatment cost. Despite this clinical and economic value, efficient tools for SPL detection are mostly absent. To bridge this gap, we developed an SPL analysis system for wide-field images using deep convolutional neural networks (DCNNs) and applied it to a 38,283 dermatological dataset collected from 133 patients and publicly available images. These images were obtained from a variety of consumer-grade cameras (15,244 nondermoscopy) and classified by three board-certified dermatologists. Our system achieved more than 90.3% sensitivity (95% confidence interval, 90 to 90.6) and 89.9% specificity (89.6 to 90.2%) in distinguishing SPLs from nonsuspicious lesions, skin, and complex backgrounds, avoiding the need for cumbersome individual lesion imaging. We also present a new method to extract intrapatient lesion saliency (ugly duckling criteria) on the basis of DCNN features from detected lesions. This saliency ranking was validated against three board-certified dermatologists using a set of 135 individual wide-field images from 68 dermatological patients not included in the DCNN training set, exhibiting 82.96% (67.88 to 88.26%) agreement with at least one of the top three lesions in the dermatological consensus ranking. This method could allow for rapid and accurate assessments of pigmented lesion suspiciousness within a primary care visit and could enable improved patient triaging, utilization of resources, and earlier treatment of melanoma.


Assuntos
Aprendizado Profundo , Melanoma , Neoplasias Cutâneas , Dermatologistas , Humanos , Melanoma/diagnóstico por imagem , Sensibilidade e Especificidade , Neoplasias Cutâneas/diagnóstico por imagem
9.
Sci Rep ; 10(1): 17366, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060714

RESUMO

Corneal stiffness plays a critical role in shaping the cornea with respect to intraocular pressure and physical interventions. However, it remains difficult to measure the mechanical properties noninvasively. Here, we report the first measurement of shear modulus in human corneas in vivo using optical coherence elastography (OCE) based on surface elastic waves. In a pilot study of 12 healthy subjects aged between 25 and 67, the Rayleigh-wave speed was 7.86 ± 0.75 m/s, corresponding to a shear modulus of 72 ± 14 kPa. Our data reveal two unexpected trends: no correlation was found between the wave speed and IOP between 13-18 mmHg, and shear modulus decreases with age (- 0.32 ± 0.17 m/s per decade). We propose that shear stiffness is governed by the interfibrillar matrix, whereas tensile strength is dominated by collagen fibrils. Rayleigh-wave OCE may prove useful for clinical diagnosis, refractive surgeries, and treatment monitoring.


Assuntos
Córnea/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Estresse Mecânico , Tomografia de Coerência Óptica/métodos , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Projetos Piloto
10.
Comput Methods Programs Biomed ; 195: 105631, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32652382

RESUMO

BACKGROUND AND OBJECTIVE: Early identification of melanoma is conducted through whole-body visual examinations to detect suspicious pigmented lesions, a situation that fluctuates in accuracy depending on the experience and time of the examiner. Computer-aided diagnosis tools for skin lesions are typically trained using pre-selected single-lesion images, taken under controlled conditions, which limits their use in wide-field scenes. Here, we propose a computer-aided classifier system with such input conditions to aid in the rapid identification of suspicious pigmented lesions at the primary care level. METHODS: 133 patients with a multitude of skin lesions were recruited for this study. All lesions were examined by a board-certified dermatologist and classified into "suspicious" and "non-suspicious". A new clinical database was acquired and created by taking Wide-Field images of all major body parts with a consumer-grade camera under natural illumination condition and with a consistent source of image variability. 3-8 images were acquired per patient on different sites of the body, and a total of 1759 pigmented lesions were extracted. A machine learning classifier was optimized and build into a computer aided classification system to binary classify each lesion using a suspiciousness score. RESULTS: In a testing set, our computer-aided classification system achieved a sensitivity of 100% for suspicious pigmented lesions that were later confirmed by dermoscopy examination ("SPL_A") and 83.2% for suspicious pigmented lesions that were not confirmed after examination ("SPL_B"). Sensitivity for non-suspicious lesions was 72.1%, and accuracy was 75.9%. With these results we defined a suspiciousness score that is aligned with common macro-screening (naked eye) practices. CONCLUSIONS: This work demonstrates that wide-field photography combined with computer-aided classification systems can distinguish suspicious from non-suspicious pigmented lesions, and might be effective to assess the severity of a suspicious pigmented lesions. We believe this approach could be useful to support skin screenings at a population-level.


Assuntos
Melanoma , Neoplasias Cutâneas , Computadores , Dermoscopia , Diagnóstico por Computador , Humanos , Melanoma/diagnóstico por imagem , Sensibilidade e Especificidade , Neoplasias Cutâneas/diagnóstico por imagem
11.
Biomed Opt Express ; 11(11): 6337-6355, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33282494

RESUMO

Corneal biomechanics play a fundamental role in the genesis and progression of corneal pathologies, such as keratoconus; in corneal remodeling after corneal surgery; and in affecting the measurement accuracy of glaucoma biomarkers, such as the intraocular pressure (IOP). Air-puff induced corneal deformation imaging reveals information highlighting normal and pathological corneal response to a non-contact mechanical excitation. However, current commercial systems are limited to monitoring corneal deformation only on one corneal meridian. Here, we present a novel custom-developed swept-source optical coherence tomography (SSOCT) system, coupled with a collinear air-puff excitation, capable of acquiring dynamic corneal deformation on multiple meridians. Backed by numerical simulations of corneal deformations, we propose two different scan patterns, aided by low coil impedance galvanometric scan mirrors that permit an appropriate compromise between temporal and spatial sampling of the corneal deformation profiles. We customized the air-puff module to provide an unobstructed SSOCT field of view and different peak pressures, air-puff durations, and distances to the eye. We acquired multi-meridian corneal deformation profiles (a) in healthy human eyes in vivo, (b) in porcine eyes ex vivo under varying controlled IOP, and (c) in a keratoconus-mimicking porcine eye ex vivo. We detected deformation asymmetries, as predicted by numerical simulations, otherwise missed on a single meridian that will substantially aid in corneal biomechanics diagnostics and pathology screening.

12.
Biomed Opt Express ; 10(12): 6084-6095, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31853387

RESUMO

Ocular biometric parameters, including full shape crystalline lens, were assessed in myopes and emmetropes using 3-D optical coherence tomography. The anterior chamber depth, the radius of the curvature of the anterior cornea, anterior lens, and posterior lens, lens thickness, lens equatorial diameter, surface area, equatorial position, volume, and power, were evaluated as functions of refractive errors and axial lengths while controlling for age effects. The crystalline lens appears to change with myopia consistent with lens thinning, equatorial, and capsular stretching while keeping constant volume. Axial elongation appears counteracted by a crystalline lens power reduction, while corneal power remains unaffected.

13.
Biomed Opt Express ; 10(7): 3622-3634, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31360608

RESUMO

Earlier studies have shown that the gradient index of refraction (GRIN) of the crystalline lens can be reconstructed in vitro using Optical Coherence Tomography (OCT) images. However, the methodology cannot be extended in vivo because it requires accurate measurements of the external geometry of the lens. Specifically, the posterior surface is measured by flipping the lens so that the posterior lens surface faces the OCT beam, a method that cannot be implemented in vivo. When the posterior surface is imaged through the lens in its natural position, it appears distorted by the unknown GRIN. In this study, we demonstrate a method to reconstruct both the GRIN and the posterior surface shape without the need to flip the lens by applying optimization routines using both on-axis and off-axis OCT images of cynomolgous monkey crystalline lenses, obtained by rotating the OCT delivery probe from -45 to +45 degrees in 5 degree steps. We found that the GRIN profile parameters can be reconstructed with precisions up to 0.009, 0.004, 1.7 and 1.1 (nucleus and surface refractive indices, and axial and meridional power law, respectively), the radius of curvature within 0.089 mm and the conic constant within 0.3. While the method was applied on isolated crystalline lenses, it paves the way to in vivo lens GRIN and posterior lens surface reconstruction.

14.
Invest Ophthalmol Vis Sci ; 57(9): OCT600-10, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27627188

RESUMO

PURPOSE: Measurement of crystalline lens geometry in vivo is critical to optimize performance of state-of-the-art cataract surgery. We used custom-developed quantitative anterior segment optical coherence tomography (OCT) and developed dedicated algorithms to estimate lens volume (VOL), equatorial diameter (DIA), and equatorial plane position (EPP). METHODS: The method was validated ex vivo in 27 human donor (19-71 years of age) lenses, which were imaged in three-dimensions by OCT. In vivo conditions were simulated assuming that only the information within a given pupil size (PS) was available. A parametric model was used to estimate the whole lens shape from PS-limited data. The accuracy of the estimated lens VOL, DIA, and EPP was evaluated by comparing estimates from the whole lens data and PS-limited data ex vivo. The method was demonstrated in vivo using 2 young eyes during accommodation and 2 cataract eyes. RESULTS: Crystalline lens VOL was estimated within 96% accuracy (average estimation error across lenses ± standard deviation: 9.30 ± 7.49 mm3). Average estimation errors in EPP were below 40 ± 32 µm, and below 0.26 ± 0.22 mm in DIA. Changes in lens VOL with accommodation were not statistically significant (2-way ANOVA, P = 0.35). In young eyes, DIA decreased and EPP increased statistically significantly with accommodation (P < 0.001) by 0.14 mm and 0.13 mm, respectively, on average across subjects. In cataract eyes, VOL = 205.5 mm3, DIA = 9.57 mm, and EPP = 2.15 mm on average. CONCLUSIONS: Quantitative OCT with dedicated image processing algorithms allows estimation of human crystalline lens volume, diameter, and equatorial lens position, as validated from ex vivo measurements, where entire lens images are available.


Assuntos
Acomodação Ocular/fisiologia , Algoritmos , Imageamento Tridimensional/métodos , Cristalino/anatomia & histologia , Refração Ocular , Tomografia de Coerência Óptica/métodos , Adulto , Idoso , Feminino , Humanos , Cristalino/fisiologia , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Doadores de Tecidos , Adulto Jovem
15.
Invest Ophthalmol Vis Sci ; 56(9): 5067-73, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26241395

RESUMO

PURPOSE: We estimated the contribution of the gradient refractive index (GRIN) and lens surfaces to lens astigmatism and lens astigmatic angle as a function of age in human donor lenses. METHODS: Human lenses were imaged, ex vivo, with 3D-spectral optical coherence tomography (OCT) and their back focal length was measured using laser ray tracing. The contribution of lens surfaces and GRIN to lens astigmatism were evaluated by computational ray tracing on the GRIN lens and a homogenous equivalent index lens. Astigmatism magnitude and relative astigmatic angle of and between lens surfaces, GRIN lens, and lens with homogeneous refractive index were evaluated, and all results were correlated with age. RESULTS: The magnitude of astigmatism in the anterior lens surface decreased with age (slope = -0.005 diopters [D]/y; r = 0.397, P = 0.018). Posterior surface astigmatism and lens astigmatism were not age-dependent. Presence of GRIN did not alter significantly the magnitude or axis of the lens astigmatism. The astigmatism of GRIN lens and lens with homogeneous refractive index correlated with anterior lens surface astigmatism (GRIN, P = 3.9E - 6, r = 0.693; equivalent refractive index lens, P = 4.1E - 4, r = 0.565). The astigmatic angle of posterior surface, GRIN lens, and homogeneous refractive index lens did not change significantly with age. CONCLUSIONS: The axis of lens astigmatism is close to the astigmatic axis of the anterior lens surface. Age-related changes in lens astigmatism appear to be related to changes in the anterior lens astigmatism. The influence of the GRIN on lens astigmatism and the astigmatic axis is minor.


Assuntos
Envelhecimento , Astigmatismo/fisiopatologia , Imageamento Tridimensional/métodos , Cristalino/fisiopatologia , Refração Ocular , Refratometria/métodos , Adulto , Idoso , Astigmatismo/diagnóstico , Humanos , Cristalino/patologia , Luz , Pessoa de Meia-Idade , Estimulação Luminosa , Tomografia de Coerência Óptica/métodos , Adulto Jovem
16.
Invest Ophthalmol Vis Sci ; 55(4): 2599-607, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24677101

RESUMO

PURPOSE: To estimate the contribution of 3-dimensional (3D) lens geometry and gradient refractive index (GRIN) to the lens spherical aberration (SA) with age. METHODS: A total of 35 donor human lenses (19-71 years) were imaged with 3D-spectral optical coherence tomography (sOCT). Paraxial and nonparaxial back focal length were measured with laser ray tracing (LRT). The parameters of a 4-variable 3D GRIN model were reconstructed from the data using a global search algorithm. Spherical aberration was calculated for GRIN lenses and their corresponding homogeneous lenses. RESULTS: Lens thickness and radii of curvature increased significantly with age. Negative anterior conic constant shifted toward more-positive values (slope: 0.228, P < 0.001), whereas posterior values remained almost constant (slope: 0.0275, P = 0.002). We found a minor decrease and a small significant increase of nucleus and surface refractive index, respectively. The GRIN meridional power exponent had a tendency to increase, indicating a flattening of GRIN distribution, whereas the axial exponent remained almost constant. We did not find a significant age-dependence of the equivalent index. The back focal length had a significant increase with age (P < 0.001). The SA shifted toward less-negative values (slope: 0.0249, P < 0.001) at higher rates when considering the reconstructed GRIN (slope: 0.041, P < 0.001). CONCLUSIONS: Three-dimensional sOCT and LRT allowed reconstruction of lens geometry and GRIN in isolated lenses. The constancy of the GRIN axial power exponent, and the opposite slopes of surface and nucleus indices with age, explain the minor variations of the average index. Both geometrical changes and increase in the GRIN meridional power exponent contribute to the age-dependent shift of negative SA.


Assuntos
Cristalino/anatomia & histologia , Refração Ocular/fisiologia , Adulto , Idoso , Humanos , Imageamento Tridimensional , Cristalino/fisiologia , Luz , Pessoa de Meia-Idade , Refratometria , Doadores de Tecidos , Tomografia de Coerência Óptica , Adulto Jovem
17.
Biomed Opt Express ; 5(10): 3547-61, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25360371

RESUMO

Quantitative 3-D Optical Coherence Tomography was used to measure surface topography of 36 isolated human lenses, and to evaluate the relationship between anterior and posterior lens surface shape and their changes with age. All lens surfaces were fitted to 6th order Zernike polynomials. Astigmatism was the predominant surface aberration in anterior and posterior lens surfaces (accounting for ~55% and ~63% of the variance respectively), followed by spherical terms, coma, trefoil and tetrafoil. The amount of anterior and posterior surface astigmatism did not vary significantly with age. The relative angle between anterior and posterior surface astigmatism axes was on average 36.5 deg, tended to decrease with age, and was >45 deg in 36.1% lenses. The anterior surface RMS spherical term, RMS coma and 3rd order RMS decreased significantly with age. In general, there was a statistically significant correlation between the 3rd and 4th order terms of the anterior and posterior surfaces. Understanding the coordination of anterior and posterior lens surface geometries and their topographical changes with age sheds light into the role of the lens in the optical properties of the eye and the lens aging mechanism.

18.
Am J Ophthalmol ; 157(5): 1077-89, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24531019

RESUMO

PURPOSE: To evaluate the objective accommodative response, change of aberrations, and depth of focus in eyes implanted with the Crystalens accommodative intraocular lens (IOL) at different accommodative demands. DESIGN: Prospective, observational study. METHODS: Eleven cataract patients (22 eyes) who underwent implantation of a Crystalens accommodative IOL, and control groups of 9 normal subjects (17 eyes) and 17 pseudophakic patients (17 eyes) implanted with monofocal IOLs were evaluated. A custom-developed laser ray tracing aberrometer was used to measure the optical aberrations. The monochromatic wave aberrations were described using a sixth-order Zernike polynomial expansion. Measurements were obtained under dilated and natural viewing conditions (for accommodative efforts ranging from 0 to 2.5 diopters [D]). The accommodative response was obtained by analyzing changes in paraxial defocus (associated to changes in defocus) and by evaluating the differences in the effective defocus (associated with defocus, spherical aberrations, and pupil diameter) with the accommodative demand. Depth of focus was estimated from through-focus objective optical quality. RESULTS: Wave aberration measurements were highly reproducible. Vertical trefoil (Z3(-3)) was the predominant higher-order aberration in the Crystalens group and significantly higher (P < .0001) than in the young group, but similar to the monofocal IOL group. The coma root mean square also was higher (P < .005) in the Crystalens group than in the young group. On average, the defocus term (Z2(0)), astigmatism, or higher-order aberrations did not change systematically with accommodative demand in Crystalens eyes. As found for paraxial defocus, the effective defocus in Crystalens eyes did not show significant differences between conditions: 0.34 ± 0.48 D (far), 0.32 ± 0.50 D (intermediate), and 0.34 ± 0.44 D (near). Depth of focus was statistically significantly higher in the Crystalens eyes than in the control groups. CONCLUSIONS: The accommodative response of eyes implanted with the Crystalens accommodative IOLs, measured objectively using laser ray tracing aberrometry, was lower than 0.4 D in all eyes. Several subjects showed changes in astigmatism, spherical aberration, trefoil, and coma with accommodation, which must arise from geometrical and alignment changes in the lens with accommodative demand. Pseudoaccommodation from increased depth of focus may contribute to near vision functionality in Crystalens-implanted patients.


Assuntos
Aberrometria , Acomodação Ocular/fisiologia , Aberrações de Frente de Onda da Córnea/fisiopatologia , Implante de Lente Intraocular , Lentes Intraoculares , Pseudofacia/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Astigmatismo/fisiopatologia , Aberrações de Frente de Onda da Córnea/diagnóstico , Percepção de Profundidade/fisiologia , Feminino , Humanos , Masculino , Facoemulsificação , Estudos Prospectivos , Adulto Jovem
19.
Vision Res ; 86: 27-34, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23597582

RESUMO

The optical properties of the crystalline lens are determined by its shape and refractive index distribution. However, to date, those properties have not been measured together in the same lens, and therefore their relative contributions to optical aberrations are not fully understood. The shape, the optical path difference, and the focal length of ten porcine lenses (age around 6 months) were measured in vitro using Optical Coherence Tomography and laser ray tracing. The 3D Gradient Refractive Index distribution (GRIN) was reconstructed by means of an optimization method based on genetic algorithms. The optimization method searched for the parameters of a 4-variable GRIN model that best fits the distorted posterior surface of the lens in 18 different meridians. Spherical aberration and astigmatism of the lenses were estimated using computational ray tracing, with the reconstructed GRIN lens and an equivalent homogeneous refractive index. For all lenses the posterior radius of curvature was systematically steeper than the anterior one, and the conic constant of both the anterior and posterior positive surfaces was positive. In average, the measured focal length increased with increasing pupil diameter, consistent with a crystalline lens negative spherical aberration. The refractive index of nucleus and surface was reconstructed to an average value of 1.427 and 1.364, respectively, for 633 nm. The results of the GRIN reconstruction showed a wide distribution of the index in all lens samples. The GRIN shifted spherical aberration towards negative values when compared to a homogeneous index. A negative spherical aberration with GRIN was found in 8 of the 10 lenses. The presence of GRIN also produced a decrease in the total amount of lens astigmatism in most lenses, while the axis of astigmatism was only little influenced by the presence of GRIN. To our knowledge, this study is the first systematic experimental study of the relative contribution of geometry and GRIN to the aberrations in a mammal lens.


Assuntos
Cristalino/fisiopatologia , Refração Ocular/fisiologia , Erros de Refração/fisiopatologia , Animais , Astigmatismo/fisiopatologia , Modelos Animais de Doenças , Suínos , Tomografia de Coerência Óptica
20.
Biomed Opt Express ; 4(3): 387-96, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23503926

RESUMO

In vivo three-dimensional (3-D) anterior segment biometry before and after cataract surgery was analyzed by using custom high-resolution high-speed anterior segment spectral domain Optical Coherence Tomography (OCT). The system was provided with custom algorithms for denoising, segmentation, full distortion correction (fan and optical) and merging of the anterior segment volumes (cornea, iris, and crystalline lens or IOL), to provide fully quantitative data of the anterior segment of the eye. The method was tested on an in vitro artificial eye with known surfaces geometry at different orientations and demonstrated on an aging cataract patient in vivo. Biometric parameters CCT, ACD/ILP, CLT/ILT Tilt and decentration are retrieved with a very high degree of accuracy. IOL was placed 400 µm behind the natural crystalline lens, The IOL was aligned with a similar orientation of the natural lens (2.47 deg superiorly), but slightly lower amounts (0.77 deg superiorly). The IOL was decentered superiorly (0.39 mm) and nasally (0.26 mm).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa