RESUMO
BACKGROUND: Two isoforms of Phosphoinositide 3-kinase (PI3K), p110γ and p110δ, are predominantly expressed in leukocytes and represent attractive therapeutic targets for the treatment of allergic asthma. The study aim was to assess the impact of administration of an inhaled PI3Kγδ inhibitor (AZD8154) in a rat model of asthma. METHODS: Firstly, we checked that the tool compound, AZD8154, inhibited rat PI3K γ & δ kinases using rat cell-based assays. Subsequently, a time-course study was conducted in a rat model of asthma to assess PI3K activity in the lung and how it is temporally associated with other key transcription pathways and asthma like features of the model. Finally, the impact on lung dosed AZD8154 on target engagement, pathway specificity, airway inflammation and lung function changes was assessed. RESULTS: Data showed that AZD8154 could inhibit rat PI3K γ & δ isoforms and, in a rat model of allergic asthma the PI3K pathway was activated in the lung. Intratracheal administration of AZD8154 caused a dose related suppression PI3K pathway activation (reduction in pAkt) and unlike after budesonide treatment, STAT and NF-κB pathways were not affected by AZD8154. The suppression of the PI3K pathway led to a marked inhibition of airway inflammation and reduction in changes in lung function. CONCLUSION: These data show that a dual PI3Kγδ inhibitor suppress key features of disease in a rat model of asthma to a similar degree as budesonide and indicate that dual PI3Kγδ inhibition may be an effective treatment for people suffering from allergic asthma.
Assuntos
Asma , Modelos Animais de Doenças , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Ratos , Masculino , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Ratos Sprague-Dawley , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/enzimologia , Relação Dose-Resposta a Droga , Inibidores de Proteínas Quinases/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Antiasmáticos/farmacologia , Ovalbumina/toxicidadeRESUMO
Rationale: Effective cough treatments are a significant unmet need in patients with lung cancer. Aprepitant is a licensed treatment for nausea and vomiting, which blocks substance P activation of NK-1 (neurokinin 1) receptors, a mechanism also implicated in cough.Objectives: To assess aprepitant in patients with lung cancer with cough and evaluate mechanisms in vagal nerve tissue.Methods: Randomized double-blind crossover trial of patients with lung cancer and bothersome cough. They received 3 days of aprepitant or matched placebo; after a 3-day washout, patients crossed to the alternative treatment. The primary endpoint was awake cough frequency measured at screening and Day 3 of each treatment; secondary endpoints included patient-reported outcomes. In vitro, the depolarization of isolated guinea pig and human vagus nerve sections in grease-gap recording chambers, indicative of sensory nerve activation, was measured to evaluate the mechanism.Measurements and Main Results: Twenty patients with lung cancer enrolled, with a mean age 66 years (±7.7); 60% were female and 80% had non-small cell cancer, 50% had advanced stage, and 55% had World Health Organization performance status 1. Cough frequency improved with aprepitant, reducing by 22.2% (95% confidence interval [CI], 2.8-37.7%) over placebo while awake (P = 0.03), 30.3% (95% CI, 12.7-44.3) over 24 hours (P = 0.002), and 59.8% (95% CI, 15.1-86.0) during sleep (P = 0.081). Patient-reported outcomes all significantly improved. Substance P depolarized both guinea pig and human vagus nerve. Aprepitant significantly inhibited substance P-induced depolarization by 78% in guinea pig (P = 0.0145) and 94% in human vagus (P = 0.0145).Conclusions: Substance P activation of NK-1 receptors appears to be an important mechanism driving cough in lung cancer, and NK-1 antagonists show promise as antitussive therapies.
Assuntos
Antitussígenos/uso terapêutico , Aprepitanto/uso terapêutico , Tosse/tratamento farmacológico , Tosse/etiologia , Neoplasias Pulmonares/complicações , Estimulação do Nervo Vago , Idoso , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Mast cell-airway smooth muscle (ASM) interactions play a major role in the immunoglobulin (Ig)E- dependent bronchoconstriction seen in asthma but less is known about IgE-independent mechanisms of mast cell activation. Transient receptor potential cation channel, subfamily V, member 4 (TRPV4) activation causes contraction of human ASM via the release of cysteinyl leukotrienes (cysLTs) but the mechanism is unknown. The objective of the present study was to investigate a role for IgE-independent, mast cell-ASM interaction in TRPV4-induced bronchospasm.Bronchoconstriction was measured in anaesthetised guinea pigs and contraction of human and guinea-pig airway tissue assessed using isometric tension measurements. Increases in intracellular [Ca2+] were imaged using the Ca2+-sensitive dye FURA2, and time-lapse ptychography was utilised as a surrogate for contraction of ASM cells.The TRPV4 agonist GSK1016790A caused contraction in vivo in the guinea pig, and in human and guinea-pig tracheal tissue, which was inhibited by the TRPV4 antagonist GSK2193874. GSK1016790A increased [Ca2+]i and released ATP in human ASM cells without causing contraction. TRPV4 and ATP evoked contraction in isolated tracheal tissue but co-culture experiments indicated a requirement for human lung mast cells. Expression profiling and pharmacological studies demonstrated that mast cell activation was dependent upon ATP activating the P2X4 receptor. Trypsin was shown to evoke contraction of tracheal tissue via activation of PAR-2-TRPV4-ATP-cysLT axis indicating the potential disease relevance of this signalling pathway.TRPV4 activation increases [Ca2+]i and releases ATP from ASM cells triggering P2X4-dependent release of cysLTs from mast cells resulting in ASM contraction. This study delineates a novel mast cell-ASM interaction and TRPV4 as a driver of IgE-independent mast cell-dependent bronchospasm.
Assuntos
Asma , Canais de Cátion TRPV , Trifosfato de Adenosina , Animais , Comunicação Celular , Cobaias , Contração Muscular , Músculo LisoRESUMO
Research using animal models of asthma is currently dominated by mouse models. This has been driven by the comprehensive knowledge on inflammatory and immune reactions in mice, as well as tools to produce genetically modified mice. Many of the identified therapeutic targets influencing airway hyper-responsiveness and inflammation in mouse models, have however been disappointing when tested clinically in asthma. It is therefore a great need for new animal models that more closely resemble human asthma. The guinea pig has for decades been used in asthma research and a comprehensive table of different protocols for asthma models is presented. The studies have primarily been focused on the pharmacological aspects of the disease, where the guinea pig undoubtedly is superior to mice. Further reasons are the anatomical and physiological similarities between human and guinea pig airways compared with that of the mouse, especially with respect to airway branching, neurophysiology, pulmonary circulation and smooth muscle distribution, as well as mast cell localization and mediator secretion. Lack of reagents and specific molecular tools to study inflammatory and immunological reactions in the guinea pig has however greatly diminished its use in asthma research. The aim in this position paper is to review and summarize what we know about different aspects of the use of guinea pig in vivo models for asthma research. The associated aim is to highlight the unmet needs that have to be addressed in the future.
Assuntos
Asma/patologia , Modelos Animais de Doenças , Cobaias/fisiologia , Animais , Desenvolvimento de Medicamentos , Edição de Genes , Cobaias/genética , Pulmão/patologia , Pulmão/fisiopatologiaRESUMO
BACKGROUND: Diesel exhaust particles (DEPs) are a major component of particulate matter in Europe's largest cities, and epidemiologic evidence links exposure with respiratory symptoms and asthma exacerbations. Respiratory reflexes are responsible for symptoms and are regulated by vagal afferent nerves, which innervate the airway. It is not known how DEP exposure activates airway afferents to elicit symptoms, such as cough and bronchospasm. OBJECTIVE: We sought to identify the mechanisms involved in activation of airway sensory afferents by DEPs. METHODS: In this study we use in vitro and in vivo electrophysiologic techniques, including a unique model that assesses depolarization (a marker of sensory nerve activation) of human vagus. RESULTS: We demonstrate a direct interaction between DEP and airway C-fiber afferents. In anesthetized guinea pigs intratracheal administration of DEPs activated airway C-fibers. The organic extract (DEP-OE) and not the cleaned particles evoked depolarization of guinea pig and human vagus, and this was inhibited by a transient receptor potential ankyrin-1 antagonist and the antioxidant N-acetyl cysteine. Polycyclic aromatic hydrocarbons, major constituents of DEPs, were implicated in this process through activation of the aryl hydrocarbon receptor and subsequent mitochondrial reactive oxygen species production, which is known to activate transient receptor potential ankyrin-1 on nociceptive C-fibers. CONCLUSIONS: This study provides the first mechanistic insights into how exposure to urban air pollution leads to activation of guinea pig and human sensory nerves, which are responsible for respiratory symptoms. Mechanistic information will enable the development of appropriate therapeutic interventions and mitigation strategies for those susceptible subjects who are most at risk.
Assuntos
Poluentes Atmosféricos/toxicidade , Asma , Espasmo Brônquico , Regulação da Expressão Gênica/efeitos dos fármacos , Material Particulado/toxicidade , Reflexo/efeitos dos fármacos , Emissões de Veículos , Idoso , Animais , Asma/induzido quimicamente , Asma/metabolismo , Asma/patologia , Asma/fisiopatologia , Espasmo Brônquico/induzido quimicamente , Espasmo Brônquico/metabolismo , Espasmo Brônquico/patologia , Espasmo Brônquico/fisiopatologia , Feminino , Cobaias , Humanos , Masculino , Camundongos , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Alveolar macrophages are sentinels of the airways that must exhibit immune restraint to innocuous antigens but elicit a robust inflammatory response to pathogenic threats. How distinction between these dichotomous functions is controlled is poorly defined.Neutrophils are the first responders to infection, and we hypothesised that they may free alveolar macrophages from their hyporesponsive state, promoting their activation. Activation of the inflammasome and interleukin (IL)-1ß release is a key early inflammatory event that must be tightly regulated. Thus, the role of neutrophils in defining inflammasome activation in the alveolar macrophage was assessed. METHODS: Mice were infected with the X31 strain of influenza virus and the role of neutrophils in alveolar macrophage activation established through administration of a neutrophil-depleting (1A8) antibody. RESULTS: Influenza elicited a robust IL-1ß release that correlated (r=0.6849; p<0.001) with neutrophil infiltrate and was ablated by neutrophil depletion. Alveolar macrophages were shown to be the prominent source of IL-1ß during influenza infection, and virus triggered the expression of Nod-like receptor protein 3 (NLRP3) inflammasome and pro-IL-1ß in these cells. However, subsequent activation of the inflammasome complex and release of mature IL-1ß from alveolar macrophages were critically dependent on the provision of a secondary signal, in the form of antimicrobial peptide mCRAMP, from infiltrating neutrophils. CONCLUSIONS: Neutrophils are critical for the activation of the NLRP3 inflammasome in alveolar macrophages during respiratory viral infection. Accordingly, we rationalise that neutrophils are recruited to the lung to confront a viable pathogenic threat and subsequently commit alveolar macrophages to a pro-inflammatory phenotype to combat infection.
Assuntos
Interleucina-1beta/imunologia , Macrófagos Alveolares/imunologia , Neutrófilos/imunologia , Infecções Respiratórias/imunologia , Viroses/imunologia , Animais , Feminino , Inflamassomos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Infecções Respiratórias/virologiaRESUMO
BACKGROUND: Asthmatics that are exposed to inhaled pollutants such as cigarette smoke (CS) have increased symptom severity. Approximately 25% of adult asthmatics are thought to be active smokers and many sufferers, especially in the third world, are exposed to high levels of inhaled pollutants. The mechanism by which CS or other airborne pollutants alter the disease phenotype and the effectiveness of treatment in asthma is not known. The aim of this study was to determine the impact of CS exposure on the phenotype and treatment sensitivity of rodent models of allergic asthma. METHODS: Models of allergic asthma were configured that mimicked aspects of the asthma phenotype and the effect of CS exposure investigated. In some experiments, treatment with gold standard asthma therapies was investigated and end-points such as airway cellular burden, late asthmatic response (LAR) and airway hyper-Reactivity (AHR) assessed. RESULTS: CS co-exposure caused an increase in the LAR but interestingly attenuated the AHR. The effectiveness of LABA, LAMA and glucocorticoid treatment on LAR appeared to be retained in the CS-exposed model system. The eosinophilia or lymphocyte burden was not altered by CS co-exposure, nor did CS appear to alter the effectiveness of glucocorticoid treatment. Steroids, however failed to reduce the neutrophilic inflammation in sensitized mice exposed to CS. CONCLUSIONS: These model data have certain parallels with clinical findings in asthmatics, where CS exposure did not impact the anti-inflammatory efficacy of steroids but attenuated AHR and enhanced symptoms such as the bronchospasm associated with the LAR. These model systems may be utilised to investigate how CS and other airborne pollutants impact the asthma phenotype; providing the opportunity to identify novel targets.
Assuntos
Asma/imunologia , Fumar Cigarros/imunologia , Modelos Animais de Doenças , Exposição por Inalação/efeitos adversos , Fenótipo , Animais , Asma/fisiopatologia , Fumar Cigarros/efeitos adversos , Fumar Cigarros/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Endogâmicos BNRESUMO
RATIONALE: Heightened cough responses to inhaled capsaicin, a transient receptor potential vanilloid 1 (TRPV1) agonist, are characteristic of patients with chronic cough. However, previously, a TRPV1 antagonist (SB-705498) failed to improve spontaneous cough frequency in these patients, despite small reductions in capsaicin-evoked cough. OBJECTIVES: XEN-D0501 (a potent TRPV1 antagonist) was compared with SB-705498 in preclinical studies to establish whether an improved efficacy profile would support a further clinical trial of XEN-D0501 in refractory chronic cough. METHODS: XEN-D0501 and SB-705498 were profiled against capsaicin in a sensory nerve activation assay and in vivo potency established against capsaicin-induced cough in the guinea pig. Twenty patients with refractory chronic cough participated in a double-blind, randomized, placebo-controlled crossover study evaluating the effect of 14 days of XEN-D0501 (oral, 4 mg twice daily) versus placebo on awake cough frequency (primary outcome), capsaicin-evoked cough, and patient-reported outcomes. MEASUREMENTS AND MAIN RESULTS: XEN-D0501 was more efficacious and 1,000-fold more potent than SB-705498 at inhibiting capsaicin-induced depolarization of guinea pig and human isolated vagus nerve. In vivo XEN-D0501 completely inhibited capsaicin-induced cough, whereas 100 times more SB-705498 was required to achieve the same effect. In patients, XEN-D0501 substantially reduced maximal cough responses to capsaicin (mean change from baseline, XEN-D0501, -19.3 ± 16.4) coughs; placebo, -1.8 ± 5.8 coughs; P < 0.0001), but not spontaneous awake cough frequency (mean change from baseline, XEN-D0501, 6.7 ± 16.9 coughs/h; placebo, 0.4 ± 13.7 coughs/h; P = 0.41). CONCLUSIONS: XEN-D0501 demonstrated superior efficacy and potency in preclinical and clinical capsaicin challenge studies; despite this improved pharmacodynamic profile, spontaneous cough frequency did not improve, ruling out TRPV1 as an effective therapeutic target for refractory cough. Clinical trial registered with www.clinicaltrialsregister.eu (2014-000306-36).
Assuntos
Antitussígenos/uso terapêutico , Capsaicina/uso terapêutico , Doença Crônica/tratamento farmacológico , Tosse/tratamento farmacológico , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Chronic lung diseases such as asthma, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis are a major and increasing global health burden with a high unmet need. Drug discovery efforts in this area have been largely disappointing and so new therapeutic targets are needed. Transient receptor potential ion channels are emerging as possible therapeutic targets, given their widespread expression in the lung, their role in the modulation of inflammatory and structural changes and in the production of respiratory symptoms, such as bronchospasm and cough, seen in chronic lung disease.
Assuntos
Pneumopatias/tratamento farmacológico , Pulmão/fisiopatologia , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Animais , Tosse/complicações , Humanos , Pneumopatias/metabolismo , Terapia de Alvo Molecular , Ensaios Clínicos Controlados Aleatórios como Assunto , Canais de Potencial de Receptor Transitório/metabolismoRESUMO
Cough is the most common reason to visit a primary care physician, yet it remains an unmet medical need. Fatty acid amide hydrolase (FAAH) is an enzyme that breaks down endocannabinoids, and inhibition of FAAH produces analgesic and anti-inflammatory effects. Cannabinoids inhibit vagal sensory nerve activation and the cough reflex, so it was hypothesised that FAAH inhibition would produce antitussive activity via elevation of endocannabinoids.Primary vagal ganglia neurons, tissue bioassay, in vivo electrophysiology and a conscious guinea pig cough model were utilised to investigate a role for fatty acid amides in modulating sensory nerve activation in vagal afferents.FAAH inhibition produced antitussive activity in guinea pigs with concomitant plasma elevation of the fatty acid amides N-arachidonoylethanolamide (anandamide), palmitoylethanolamide, N-oleoylethanolamide and linoleoylethanolamide. Palmitoylethanolamide inhibited tussive stimulus-induced activation of guinea pig airway innervating vagal ganglia neurons, depolarisation of guinea pig and human vagus, and firing of C-fibre afferents. These effects were mediated via a cannabinoid CB2/Gi/o-coupled pathway and activation of protein phosphatase 2A, resulting in increased calcium sensitivity of calcium-activated potassium channels.These findings identify FAAH inhibition as a target for the development of novel, antitussive agents without the undesirable side-effects of direct cannabinoid receptor agonists.
Assuntos
Amidoidrolases/antagonistas & inibidores , Antitussígenos/uso terapêutico , Capsaicina/farmacologia , Tosse/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Compostos de Espiro/farmacologia , Adulto , Idoso , Animais , Compostos Aza/farmacologia , Moduladores de Receptores de Canabinoides/farmacologia , Canabinoides/antagonistas & inibidores , Feminino , Cobaias , Humanos , Masculino , Pessoa de Meia-Idade , Receptor CB2 de Canabinoide/efeitos dos fármacos , Nervo Vago/efeitos dos fármacosRESUMO
BACKGROUND: The incidence of asthma is increasing at an alarming rate. While the current available therapies are effective, there are associated side effects and they fail to adequately control symptoms in all patient subsets. In the search to understand disease pathogenesis and find effective therapies hypotheses are often tested in animal models before progressing into clinical studies. However, current dogma is that animal model data is often not predictive of clinical outcome. One possible reason for this is the end points measured such as antigen-challenge induced late asthmatic response (LAR) is often used in early clinical development, but seldom in animal model systems. As the mouse is typically selected as preferred species for pre-clinical models, we wanted to characterise and probe the validity of a murine model exhibiting an allergen induced LAR. METHODS: C57BL/6 mice were sensitised with antigen and subsequently topically challenged with the same antigen. The role of AlumTM adjuvant, glucocorticoid, long acting muscarinic receptor antagonist (LAMA), TRPA1, CD4+ and CD8+ T cells, B cells, Mast cells and IgE were determined in the LAR using genetically modified mice and a range of pharmacological tools. RESULTS: Our data showed that unlike other features of asthma (e.g. cellular inflammation, elevated IgE levels and airway hyper-reactivity (AHR) the LAR required AlumTMadjuvant. Furthermore, the LAR appeared to be sensitive to glucocorticoid and required CD4+ T cells. Unlike in other species studied, the LAR was not sensitive to LAMA treatment nor required the TRPA1 ion channel, suggesting that airway sensory nerves are not involved in the LAR in this species. Furthermore, the data suggested that CD8+ T cells and the mast cell-B-cell - IgE axis appear to be protective in this murine model. CONCLUSION: Together we can conclude that this model does feature steroid sensitive, CD4+ T cell dependent, allergen induced LAR. However, collectively our data questions the validity of using the murine pre-clinical model of LAR in the assessment of future asthma therapies.
Assuntos
Antígenos/imunologia , Asma/imunologia , Citocinas/imunologia , Modelos Animais de Doenças , Imunidade Inata/imunologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de TempoRESUMO
RATIONALE: Most airway diseases, including chronic obstructive pulmonary disease (COPD), are associated with excessive coughing. The extent to which this may be a consequence of increased activation of vagal afferents by pathology in the airways (e.g., inflammatory mediators, excessive mucus) or an altered neuronal phenotype is unknown. Understanding whether respiratory diseases are associated with dysfunction of airway sensory nerves has the potential to identify novel therapeutic targets. OBJECTIVES: To assess the changes in cough responses to a range of inhaled irritants in COPD and model these in animals to investigate the underlying mechanisms. METHODS: Cough responses to inhaled stimuli in patients with COPD, healthy smokers, refractory chronic cough, asthma, and healthy volunteers were assessed and compared with vagus/airway nerve and cough responses in a cigarette smoke (CS) exposure guinea pig model. MEASUREMENTS AND MAIN RESULTS: Patients with COPD had heightened cough responses to capsaicin but reduced responses to prostaglandin E2 compared with healthy volunteers. Furthermore, the different patient groups all exhibited different patterns of modulation of cough responses. Consistent with these findings, capsaicin caused a greater number of coughs in CS-exposed guinea pigs than in control animals; similar increased responses were observed in ex vivo vagus nerve and neuron cell bodies in the vagal ganglia. However, responses to prostaglandin E2 were decreased by CS exposure. CONCLUSIONS: CS exposure is capable of inducing responses consistent with phenotypic switching in airway sensory nerves comparable with the cough responses observed in patients with COPD. Moreover, the differing profiles of cough responses support the concept of disease-specific neurophenotypes in airway disease. Clinical trial registered with www.clinicaltrials.gov (NCT 01297790).
Assuntos
Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Sistema Respiratório/inervação , Sistema Respiratório/fisiopatologia , Administração por Inalação , Adulto , Idoso , Animais , Capsaicina/administração & dosagem , Tosse , Dinoprostona/administração & dosagem , Modelos Animais de Doenças , Feminino , Cobaias , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Fumaça , Nervo Vago/fisiopatologiaRESUMO
BACKGROUND: Sensory nerves innervating the airways play an important role in regulating various cardiopulmonary functions, maintaining homeostasis under healthy conditions and contributing to pathophysiology in disease states. Hypo-osmotic solutions elicit sensory reflexes, including cough, and are a potent stimulus for airway narrowing in asthmatic patients, but the mechanisms involved are not known. Transient receptor potential cation channel, subfamily V, member 4 (TRPV4) is widely expressed in the respiratory tract, but its role as a peripheral nociceptor has not been explored. OBJECTIVE: We hypothesized that TRPV4 is expressed on airway afferents and is a key osmosensor initiating reflex events in the lung. METHODS: We used guinea pig primary cells, tissue bioassay, in vivo electrophysiology, and a guinea pig conscious cough model to investigate a role for TRPV4 in mediating sensory nerve activation in vagal afferents and the possible downstream signaling mechanisms. Human vagus nerve was used to confirm key observations in animal tissues. RESULTS: Here we show TRPV4-induced activation of guinea pig airway-specific primary nodose ganglion cells. TRPV4 ligands and hypo-osmotic solutions caused depolarization of murine, guinea pig, and human vagus and firing of Aδ-fibers (not C-fibers), which was inhibited by TRPV4 and P2X3 receptor antagonists. Both antagonists blocked TRPV4-induced cough. CONCLUSION: This study identifies the TRPV4-ATP-P2X3 interaction as a key osmosensing pathway involved in airway sensory nerve reflexes. The absence of TRPV4-ATP-mediated effects on C-fibers indicates a distinct neurobiology for this ion channel and implicates TRPV4 as a novel therapeutic target for neuronal hyperresponsiveness in the airways and symptoms, such as cough.
Assuntos
Trifosfato de Adenosina/metabolismo , Neurônios Aferentes/metabolismo , Sistema Respiratório/inervação , Sistema Respiratório/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Sinalização do Cálcio , Tosse , Relação Dose-Resposta a Droga , Cobaias , Masculino , Camundongos , Camundongos Knockout , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Fibras Nervosas Mielinizadas/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Gânglio Nodoso/citologia , Gânglio Nodoso/efeitos dos fármacos , Gânglio Nodoso/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Canais de Cátion TRPV/agonistas , Nervo Vago/efeitos dos fármacos , Nervo Vago/fisiologiaRESUMO
BACKGROUND: Asthma prevalence has increased world-wide especially in children; thus there is a need to develop new therapies that are safe and effective especially for patients with severe/refractory asthma. CD4(+) T cells are thought to play a central role in disease pathogenesis and associated symptoms. Recently, TRPV1 has been demonstrated to regulate the activation and inflammatory properties of CD4(+) cells. The aim of these experiments was to demonstrate the importance of CD4(+) T cells and the role of TRPV1 in an asthma model using a clinically ready TRPV1 inhibitor (XEN-D0501) and genetically modified (GM) animals. METHODS: Mice (wild type, CD4 (-/-) or TRPV1 (-/-)) and rats were sensitised with antigen (HDM or OVA) and subsequently topically challenged with the same antigen. Key features associated with an allergic asthma type phenotype were measured: lung function (airway hyperreactivity [AHR] and late asthmatic response [LAR]), allergic status (IgE levels) and airway inflammation. RESULTS: CD4(+) T cells play a central role in both disease model systems with all the asthma-like features attenuated. Targeting TRPV1 using either GM mice or a pharmacological inhibitor tended to decrease IgE levels, airway inflammation and lung function changes. CONCLUSION: Our data suggests the involvement of TRPV1 in allergic asthma and thus we feel this target merits further investigation.
Assuntos
Asma/metabolismo , Pulmão/metabolismo , Pneumonia/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Antialérgicos/farmacologia , Anti-Inflamatórios/farmacologia , Asma/induzido quimicamente , Asma/imunologia , Asma/prevenção & controle , Antígenos CD4/genética , Antígenos CD4/metabolismo , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Imunoglobulina E/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina , Fenótipo , Pneumonia/induzido quimicamente , Pneumonia/imunologia , Pneumonia/prevenção & controle , Pyroglyphidae/imunologia , Ratos Endogâmicos BN , Transdução de Sinais , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genéticaRESUMO
BACKGROUND: The incidence of asthma is increasing at an alarming rate and while the current available therapies are effective in the majority of patients they fail to adequately control symptoms at the more severe end of the disease spectrum. In the search to understand disease pathogenesis and find effective therapies animal models are often employed. As exposure to house dust mite (HDM) has a causative link, it is thought of as the allergen of choice for modelling asthma. The objective was to develop a HDM driven model of asthmatic sensitisation and characterise the role of key allergic effector cells/mediators. METHODS: Mice were sensitised with low doses of HDM and then subsequently challenged. Cellular inflammation, IgE and airway responsiveness (AHR) was assessed in wild type mice or CD4(+)/CD8(+) T cells, B cells or IgE knock out mice. RESULTS: Only those mice sensitised with HDM responded to subsequent low dose topical challenge. Similar to the classical ovalbumin model, there was no requirement for systemic alum sensitisation. Characterisation of the role of effector cells demonstrated that the allergic cellular inflammation and AHR was dependent on CD4(+) and CD8(+) T cells but not B cells or IgE. Finally, we show that this model, unlike the classic OVA model, appears to be resistant to developing tolerance. CONCLUSIONS: This CD4(+)/CD8(+) T cell dependent, HDM driven model of allergic asthma exhibits key features of asthma. Furthermore, we suggest that the ability to repeat challenge with HDM means this model is amenable to studies exploring the effect of therapeutic dosing in chronic, established disease.
Assuntos
Antígenos de Dermatophagoides/imunologia , Asma/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Hipersensibilidade Respiratória/imunologia , Animais , Antígenos de Dermatophagoides/administração & dosagem , Asma/patologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pyroglyphidae/imunologia , Hipersensibilidade Respiratória/patologiaRESUMO
Cellular senescence has been associated with the structural and functional decline observed during physiological lung aging and in chronic obstructive pulmonary disease (COPD). Airway epithelial cells are the first line of defense in the lungs and are important to COPD pathogenesis. However, the mechanisms underlying airway epithelial cell senescence, and particularly the role of telomere dysfunction in this process, are poorly understood. We aimed to investigate telomere dysfunction in airway epithelial cells from patients with COPD, in the aging murine lung and following cigarette smoke exposure. We evaluated colocalization of γ-histone protein 2A.X and telomeres and telomere length in small airway epithelial cells from patients with COPD, during murine lung aging, and following cigarette smoke exposure in vivo and in vitro. We found that telomere-associated DNA damage foci increase in small airway epithelial cells from patients with COPD, without significant telomere shortening detected. With age, telomere-associated foci increase in small airway epithelial cells of the murine lung, which is accelerated by cigarette smoke exposure. Moreover, telomere-associated foci predict age-dependent emphysema, and late-generation Terc null mice, which harbor dysfunctional telomeres, show early-onset emphysema. We found that cigarette smoke accelerates telomere dysfunction via reactive oxygen species in vitro and may be associated with ataxia telangiectasia mutated-dependent secretion of inflammatory cytokines interleukin-6 and -8. We propose that telomeres are highly sensitive to cigarette smoke-induced damage, and telomere dysfunction may underlie decline of lung function observed during aging and in COPD.
Assuntos
Dano ao DNA , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/genética , Telômero/genética , Idoso , Envelhecimento , Animais , Estudos de Casos e Controles , Linhagem Celular , Reparo do DNA , Células Epiteliais/patologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mucosa Respiratória/patologia , Fumar/efeitos adversosRESUMO
A single cytosine-guanine dinucleotide (CpG) site within coagulation factor II (thrombin) receptor-like 3 (F2RL3) was recently found to be hypomethylated in peripheral blood genomic DNA from smokers compared with former and non-smokers. We performed two epigenome-wide association studies (EWAS) nested in a prospective healthy cohort using the Illumina 450K Methylation Beadchip. The two populations consisted of matched pairs of healthy individuals (n = 374), of which half went on to develop breast or colon cancer. The association was analysed between methylation and smoking status, as well as cancer risk. In addition to the same locus in F2RL3, we report several loci that are hypomethylated in smokers compared with former and non-smokers, including an intragenic region of the aryl hydrocarbon receptor repressor gene (AHRR; cg05575921, P = 2.31 × 10(-15); effect size = 14-17%), an intergenic CpG island on 2q37.1 (cg21566642, P = 3.73 × 10(-13); effect size = 12%) and a further intergenic region at 6p21.33 (cg06126421, P = 4.96 × 10(-11), effect size = 7-8%). Bisulphite pyrosequencing validated six loci in a further independent population of healthy individuals (n = 180). Methylation levels in AHRR were also significantly decreased (P < 0.001) and expression increased (P = 0.0047) in the lung tissue of current smokers compared with non-smokers. This was further validated in a mouse model of smoke exposure. We observed an association with breast cancer risk for the 2q37.1 locus (P = 0.003, adjusted for the smoking status), but not for the other loci associated with smoking. These data show that smoking has a direct effect on the epigenome in lung tissue, which is also detectable in peripheral blood DNA and may contribute to cancer risk.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neoplasias da Mama/genética , Neoplasias do Colo/genética , Metilação de DNA/genética , Receptores de Trombina/genética , Proteínas Repressoras/genética , Fumar/genética , Animais , Estudos de Casos e Controles , Ilhas de CpG/genética , Epigenômica , Feminino , Estudo de Associação Genômica Ampla , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Estado Nutricional , Fumar/metabolismo , Fumar/patologiaRESUMO
BACKGROUND: Asthma and chronic obstructive pulmonary disease (COPD) are chronic inflammatory diseases of the airway. Current treatment options (long acting ß-adrenoceptor agonists and glucocorticosteroids) are not optimal as they are only effective in certain patient groups and safety concerns exist regarding both compound classes. Therefore, novel bronchodilator and anti-inflammatory strategies are being pursued. Prostaglandin E2 (PGE2) is an arachidonic acid-derived eicosanoid produced by the lung which acts on four different G-protein coupled receptors (EP1-4) to cause an array of beneficial and deleterious effects. The aim of this study was to identify the EP receptor mediating the anti-inflammatory actions of PGE2 in the lung using a range of cell-based assays and in vivo models. METHODS AND RESULTS: It was demonstrated in three distinct model systems (innate stimulus, lipopolysaccharide (LPS); allergic response, ovalbumin (OVA); inhaled pollutant, cigarette smoke) that mice missing functional EP4 (Ptger4(-/-)) receptors had higher levels of airway inflammation, suggesting that endogenous PGE2 was suppressing inflammation via EP4 receptor activation. Cell-based assay systems (murine and human monocytes/alveolar macrophages) demonstrated that PGE2 inhibited cytokine release from LPS-stimulated cells and that this was mimicked by an EP4 (but not EP1-3) receptor agonist and inhibited by an EP4 receptor antagonist. The anti-inflammatory effect occurred at the transcriptional level and was via the adenylyl cyclase/cAMP/ cAMP-dependent protein kinase (PKA) axis. CONCLUSION: This study demonstrates that EP4 receptor activation is responsible for the anti-inflammatory activity of PGE2 in a range of disease relevant models and, as such, could represent a novel therapeutic target for chronic airway inflammatory conditions.
Assuntos
Asma/tratamento farmacológico , Pulmão/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Receptores de Prostaglandina E/uso terapêutico , Animais , Asma/metabolismo , Asma/patologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Prostaglandin D2 (PGD2) causes cough and levels are increased in asthma suggesting that it may contribute to symptoms. Although the prostaglandin D2 receptor 2 (DP2) is a target for numerous drug discovery programmes little is known about the actions of PGD2 on sensory nerves and cough. We used human and guinea pig bioassays, in vivo electrophysiology and a guinea pig conscious cough model to assess the effect of prostaglandin D2 receptor (DP1), DP2 and thromboxane receptor antagonism on PGD2 responses. PGD2 caused cough in a conscious guinea pig model and an increase in calcium in airway jugular ganglia. Using pharmacology and receptor-deficient mice we showed that the DP1 receptor mediates sensory nerve activation in mouse, guinea pig and human vagal afferents. In vivo, PGD2 and a DP1 receptor agonist, but not a DP2 receptor agonist, activated single airway C-fibres. Interestingly, activation of DP2 inhibited sensory nerve firing to capsaicin in vitro and in vivo. The DP1 receptor could be a therapeutic target for symptoms associated with asthma. Where endogenous PGD2 levels are elevated, loss of DP2 receptor-mediated inhibition of sensory nerves may lead to an increase in vagally associated symptoms and the potential for such adverse effects should be investigated in clinical studies with DP2 antagonists.
Assuntos
Espasmo Brônquico/fisiopatologia , Tosse/fisiopatologia , Prostaglandina D2/metabolismo , Receptores de Tromboxanos/metabolismo , Fator de Transcrição DP1/metabolismo , Nervo Vago/efeitos dos fármacos , Administração por Inalação , Animais , Hiper-Reatividade Brônquica/tratamento farmacológico , Hiper-Reatividade Brônquica/metabolismo , Espasmo Brônquico/metabolismo , Capsaicina/farmacologia , Células Cultivadas , Tosse/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Cobaias , Humanos , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Sensibilidade e Especificidade , Técnicas de Cultura de Tecidos , Fatores de Transcrição/metabolismoRESUMO
Asthma is increasing globally and current treatments only manage a proportion of patients. There is an urgent need to develop new therapies. Lymphocytes are thought to play a central role in the pathophysiology of asthma through the production of inflammatory mediators. This is thought to be via the transcription factor NFAT which in turn can be activated through Ca(2+) release-activated Ca(2+) (CRAC) channels. The aim of this work was to investigate the role of CRAC in clinical and pre-clinical models of allergic asthma. Initial data demonstrated that the NFAT pathway is increased in stimulated lymphocytes from asthmatics. To confirm a role for the channel we showed that a selective inhibitor, Synta 66, blocked mediator production from lymphocytes. Synta 66 inhibited CD2/3/28 induced IL-2, IL-7, IL-13 & IFNΥ in a concentration-dependent manner in healthy and severe asthma donors, with over 60% inhibition observed for all cytokines. NFAT pathway was also increased in a pre-clinical asthma model. In this model we have demonstrated that CRAC played a central role in the airway inflammation and late asthmatic response (LAR). In conclusion, our data provides evidence that suggests targeting CRAC channels could be of therapeutic benefit for asthma sufferers.