Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928215

RESUMO

Citrate, which is obtained from oxaloacetate and acetyl-CoA by citrate synthase in mitochondria, plays a key role in both normal and cancer cell metabolism. In this work, we investigated the effect of 10 mM extracellular citrate supplementation on HepG2 cells. Gene expression reprogramming was evaluated by whole transcriptome analysis using gene set enrichment analysis (GSEA). The transcriptomic data were validated through analyzing changes in the mRNA levels of selected genes by qRT-PCR. Citrate-treated cells exhibited the statistically significant dysregulation of 3551 genes; 851 genes were upregulated and 822 genes were downregulated. GSEA identified 40 pathways affected by differentially expressed mRNAs. The most affected biological processes were related to lipid and RNA metabolism. Several genes of the cytochrome P450 family were upregulated in treated cells compared to controls, including the CYP3A5 gene, a tumor suppressor in hepatocellular carcinoma (HCC) that plays an important protective role in HCC metastasis. The citrate-induced dysregulation of cytochromes could both improve the effectiveness of chemotherapeutics used in combination and reduce the aggressiveness of tumors by diminishing cell migration and invasion.


Assuntos
Movimento Celular , Ácido Cítrico , Regulação Neoplásica da Expressão Gênica , Humanos , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Células Hep G2 , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ácido Cítrico/farmacologia , Ácido Cítrico/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Invasividade Neoplásica , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Transcriptoma , Perfilação da Expressão Gênica
2.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256207

RESUMO

Up Regulation Gene seven (URG7) is the pseudogene 2 of the transporter ABCC6. The translated URG7 protein is localized with its single transmembrane α-helix in the endoplasmic reticulum (ER) membrane, orienting the N- and C-terminal regions in the lumen and cytoplasm, respectively, and it plays a crucial role in the folding of ER proteins. Previously, the C-terminal region of URG7 (PU, residues 75-99) has been shown to modify the aggregation state of α-synuclein in the lysate of HepG2 cells. PU analogs were synthesized, and their anti-aggregation potential was tested in vitro on α-synuclein obtained using recombinant DNA technology. Circular dichroism (CD), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and microscopic techniques were used to assess the sample's behavior. The results show that the peptides studied by themselves are prone to clathrate-like structure formation of variable stability. Aggregation of α-synuclein is accompanied by desolvation of its peptide chain and an increase in intermolecular ß-sheets. The PU analogs all interact with α-synuclein aggregates and those possessing the most stable clathrate-like structures have the highest disaggregating effect. These findings suggest that the C-terminal region of URG7 may have a role in interacting and modulating α-synuclein structures and could be used to generate interesting therapeutic candidates as disaggregators of α-synuclein.


Assuntos
Proteínas Associadas à Resistência a Múltiplos Medicamentos , Peptídeos , alfa-Sinucleína , alfa-Sinucleína/genética , Hidrocarbonetos Aromáticos com Pontes , Retículo Endoplasmático , Peptídeos/farmacologia , Pseudogenes , Humanos , Células Hep G2 , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética
3.
Biol Res ; 56(1): 33, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37344914

RESUMO

BACKGROUND: Voltage-dependent anion selective channels (VDACs) are the most abundant mitochondrial outer membrane proteins, encoded in mammals by three genes, VDAC1, 2 and 3, mostly ubiquitously expressed. As 'mitochondrial gatekeepers', VDACs control organelle and cell metabolism and are involved in many diseases. Despite the presence of numerous VDAC pseudogenes in the human genome, their significance and possible role in VDAC protein expression has not yet been considered. RESULTS: We investigated the relevance of processed pseudogenes of human VDAC genes, both in physiological and in pathological contexts. Using high-throughput tools and querying many genomic and transcriptomic databases, we show that some VDAC pseudogenes are transcribed in specific tissues and pathological contexts. The obtained experimental data confirm an association of the VDAC1P8 pseudogene with acute myeloid leukemia (AML). CONCLUSIONS: Our in-silico comparative analysis between the VDAC1 gene and its VDAC1P8 pseudogene, together with experimental data produced in AML cellular models, indicate a specific over-expression of the VDAC1P8 pseudogene in AML, correlated with a downregulation of the parental VDAC1 gene.


Assuntos
Leucemia Mieloide Aguda , Pseudogenes , Canais de Ânion Dependentes de Voltagem , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mitocôndrias , Pseudogenes/genética , Transcriptoma , Canais de Ânion Dependentes de Voltagem/genética , Canais de Ânion Dependentes de Voltagem/metabolismo
4.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003580

RESUMO

There is growing evidence that various ATP-binding cassette (ABC) transporters contribute to the growth and development of tumors, but relatively little is known about how the ABC transporter family behaves in hepatocellular carcinoma (HCC), one of the most common cancers worldwide. Cellular model studies have shown that ABCC6, which belongs to the ABC subfamily C (ABCC), plays a role in the cytoskeleton rearrangement and migration of HepG2 hepatocarcinoma cells, thus highlighting its role in cancer biology. Deep knowledge on the molecular mechanisms underlying the observed results could provide therapeutic insights into the tumors in which ABCC6 is modulated. In this study, differential expression levels of mRNA transcripts between ABCC6-silenced HepG2 and control groups were measured, and subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. Real-Time PCR and Western blot analyses confirmed bioinformatics; functional studies support the molecular mechanisms underlying the observed effects. The results provide valuable information on the dysregulation of fundamental cellular processes, such as the focal adhesion pathway, which allowed us to obtain detailed information on the active role that the down-regulation of ABCC6 could play in the biology of liver tumors, as it is involved not only in cell migration but also in cell adhesion and invasion.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Células Hep G2 , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina
5.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38203652

RESUMO

Up-regulated Gene clone 7 (URG7) is a protein localized in the endoplasmic reticulum (ER) and overexpressed in liver cells upon hepatitis B virus (HBV) infection. Its activity has been related to the attenuation of ER stress resulting from HBV infection, promoting protein folding and ubiquitination and reducing cell apoptosis overall. While the antiapoptotic activity of URG7 in HBV-infected cells may have negative implications, this effect could be exploited positively in the field of proteinopathies, such as neurodegenerative diseases. In this work, we aimed to verify the possible contribution of URG7 as a reliever of cellular proteostasis alterations in a neuronal in vitro system. Following tunicamycin-induced ER stress, URG7 was shown to modulate different markers of the unfolded protein response (UPR) in favor of cell survival, mitigating ER stress and activating autophagy. Furthermore, URG7 promoted ubiquitination, and determined a reduction in protein aggregation, calcium release from the ER and intracellular ROS content, confirming its pro-survival activity. Therefore, in light of the results reported in this work, we hypothesize that URG7 offers activity as an ER stress reliever in a neuronal in vitro model, and we paved the way for a new approach in the treatment of neurodegenerative diseases.


Assuntos
Hepatite B , Neuroblastoma , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Humanos , Fármacos Neuroprotetores/farmacologia , Linhagem Celular , Vírus da Hepatite B , Células Clonais
6.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36901980

RESUMO

Liver cancer is one of the most common causes of cancer death worldwide. In recent years, substantial progress has been made in the development of systemic therapies, but there is still the need for new drugs and technologies that can increase the survival and quality of life of patients. The present investigation reports the development of a liposomal formulation of a carbamate molecule, reported as ANP0903, previously tested as an inhibitor of HIV-1 protease and now evaluated for its ability to induce cytotoxicity in hepatocellular carcinoma cell lines. PEGylated liposomes were prepared and characterized. Small, oligolamellar vesicles were produced, as demonstrated by light scattering results and TEM images. The physical stability of the vesicles in biological fluids was demonstrated in vitro, alongside the stability during storage. An enhanced cellular uptake was verified in HepG2 cells treated with liposomal ANP0903, resulting in a greater cytotoxicity. Several biological assays were performed to elucidate the molecular mechanisms explaining the proapoptotic effect of ANP0903. Our results allow us to hypothesize that the cytotoxic action in tumor cells is probably due to the inhibition of the proteasome, resulting in an increase in the amount of ubiquitinated proteins within the cells, which in turn triggers activation of autophagy and apoptosis processes, resulting in cell death. The proposed liposomal formulation represents a promising approach to deliver a novel antitumor agent to cancer cells and enhance its activity.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Lipossomos/farmacologia , Células Hep G2 , Carbamatos/farmacologia , Qualidade de Vida , Antineoplásicos/farmacologia , Apoptose , Polietilenoglicóis/farmacologia , Linhagem Celular Tumoral
7.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430920

RESUMO

Epidemiological studies have postulated an inverse correlation between developing cancer and neurodegeneration. It is known that the secretome plays a vital role in cell-cell communication in health and disease; the microglia is the resident macrophage of the central nervous system which maintains neuronal integrity by adapting as the microenvironment changes. The present study aimed to identify, in a cell model, biomarkers that link neurodegenerative diseases to cancer or vice versa. Real-time PCR and western blot analysis were used to characterize the effects on gene and protein expression of human hepatoblastoma (HepG2) and human microglia (HMC-III) cells after exchanging part of their conditioned medium. Biomarkers of the endoplasmic reticulum, and mitophagy and inflammatory processes were evaluated. In both cell types, we observed the activation of cytoprotective mechanisms against any potential pro-oxidant or pro-inflammatory signals present in secretomes. In contrast, HepG2 but not HMC-III cells seem to trigger autophagic processes following treatment with conditioned medium of microglia, thus suggesting a cell-specific adaptive response.


Assuntos
Fenômenos Fisiológicos Celulares , Microglia , Humanos , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Microglia/metabolismo , Biomarcadores/metabolismo , Expressão Gênica
8.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799762

RESUMO

Pseudoxanthoma elasticum (PXE) is a complex autosomal recessive disease caused by mutations of ABCC6 transporter and characterized by ectopic mineralization of soft connective tissues. Compared to the other ABC transporters, very few studies are available to explain the structural components and working of a full ABCC6 transporter, which may provide some idea about its physiological role in humans. Some studies suggest that mutations of ABCC6 in the liver lead to a decrease in some circulating factor and indicate that PXE is a metabolic disease. It has been reported that ABCC6 mediates the efflux of ATP, which is hydrolyzed in PPi and AMP; in the extracellular milieu, PPi gives potent anti-mineralization effect, whereas AMP is hydrolyzed to Pi and adenosine which affects some cellular properties by modulating the purinergic pathway. Structural and functional studies have demonstrated that silencing or inhibition of ABCC6 with probenecid changed the expression of several genes and proteins such as NT5E and TNAP, as well as Lamin, and CDK1, which are involved in cell motility and cell cycle. Furthermore, a change in cytoskeleton rearrangement and decreased motility of HepG2 cells makes ABCC6 a potential target for anti-cancer therapy. Collectively, these findings suggested that ABCC6 transporter performs functions that modify both the external and internal compartments of the cells.


Assuntos
Hepatócitos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação , Neoplasias/genética , Pseudoxantoma Elástico/genética , Animais , Antineoplásicos/uso terapêutico , Resistência a Medicamentos/genética , Células Hep G2 , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Pseudoxantoma Elástico/metabolismo
9.
Int J Mol Sci ; 22(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33918053

RESUMO

Quercetin is a member of the flavonoid group of compounds, which is abundantly present in various dietary sources. It has excellent antioxidant properties and anti-inflammatory activity and is very effective as an anti-cancer agent against various types of tumors, both in vivo and in vitro. Quercetin has been also reported to modulate the activity of some members of the multidrug-resistance transporters family, such as P-gp, ABCC1, ABCC2, and ABCG2, and the activity of ecto-5'-nucleotidase (NT5E/CD73), a key regulator in some tumor processes such as invasion, migration, and metastasis. In this study, we investigated the effect of Quercetin on ABCC6 expression in HepG2 cells. ABCC6 is a member of the superfamily of ATP-binding cassette (ABC) transporters, poorly involved in drug resistance, whose mutations cause pseudoxanthoma elasticum, an inherited disease characterized by ectopic calcification of soft connective tissues. Recently, it has been reported that ABCC6 contributes to cytoskeleton rearrangements and HepG2 cell motility through purinergic signaling. Gene and protein expression were evaluated by quantitative Reverse-Transcription PCR (RT-qPCR) and western blot, respectively. Actin cytoskeleton dynamics was evaluated by laser confocal microscopy using fluorophore-conjugated phalloidin. Cell motility was analyzed by an in vitro wound-healing migration assay. We propose that ABCC6 expression may be controlled by the AKT pathway as part of an adaptative response to oxidative stress, which can be mitigated by the use of Quercetin-like flavonoids.


Assuntos
Ativação do Canal Iônico/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Quercetina/farmacologia , Actinas/metabolismo , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Multimerização Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Bioorg Med Chem ; 27(9): 1863-1870, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30922618

RESUMO

New heteroaryl HIV-protease inhibitors bearing a carbamoyl spacer were synthesized in few steps and high yield, from commercially available homochiral epoxides. Different substitution patterns were introduced onto a given isopropanoyl-sulfonamide core that can have either H or benzyl group. The in vitro inhibition activity against recombinant protease showed a general beneficial effect of both carbamoyl moiety and the benzyl group, ranging the IC50 values between 11 and 0.6 nM. In particular, benzofuryl and indolyl derivatives showed IC50 values among the best for such structurally simple inhibitors. Docking analysis allowed to identify the favorable situation of such derivatives in terms of number of interactions in the active site, supporting the experimental results. The inhibition activity was also confirmed in HEK293 mammalian cells and was maintained against protease mutants. Furthermore, the metabolic stability was comparable with that of the commercially available inhibitors.


Assuntos
Carbamatos/química , Inibidores da Protease de HIV/síntese química , Protease de HIV/genética , Sítios de Ligação , Carbamatos/farmacologia , Domínio Catalítico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células HEK293 , Protease de HIV/metabolismo , Inibidores da Protease de HIV/farmacologia , HIV-1/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Mutação
11.
Biol Cell ; 110(7): 147-158, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29704455

RESUMO

BACKGROUND INFORMATION: Up-regulated Gene clone 7 (URG7) is an ER resident protein, whose expression is up-regulated in the presence of hepatitis B virus X antigen (HBxAg) during HBV infection. In virus-infected hepatocytes, URG7 shows an anti-apoptotic activity due to the PI3K/AKT signalling activation, does not seem to have tumorigenic properties, but it appears to promote the development and progression of fibrosis. However, the molecular mechanisms underlying URG7 activity remain largely unknown. RESULTS: To shed light on URG7 activity, we first analysed its interactome in HepG2 transfected cells: this analysis suggests that URG7 could have a role in affecting protein synthesis, folding and promoting proteins degradation. Moreover, keeping into account its subcellular localisation in the ER and that several viral infections give rise to ER stress, a panel of experiments was performed to evaluate a putative role of URG7 in ER stress. Our main results demonstrate that in ER-stressed cells URG7 is able to modulate the expression of Unfolded Protein Response (UPR) markers towards survival outcomes, up-regulating GRP78 protein and down-regulating the pro-apoptotic protein CHOP. Furthermore, URG7 reduces the ER stress by decreasing the amount of unfolded proteins, by increasing both the total protein ubiquitination and the AKT activation and reducing Caspase 3 activation. CONCLUSIONS: All together these data suggest that URG7 plays a pivotal role as a reliever of ER stress-induced apoptosis. SIGNIFICANCE: This is the first characterisation of URG7 activity under ER stress conditions. The results presented here will help to hypothesise new strategies to counteract the antiapoptotic activity of URG7 in the context of the viral infection.


Assuntos
Apoptose , Carcinoma Hepatocelular/patologia , Estresse do Retículo Endoplasmático , Neoplasias Hepáticas/patologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Fator de Transcrição CHOP/metabolismo , Carcinoma Hepatocelular/metabolismo , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteólise , Proteoma/análise , Proteômica/métodos , Células Tumorais Cultivadas , Ubiquitinação , Resposta a Proteínas não Dobradas
12.
Mediators Inflamm ; 2018: 1419352, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050389

RESUMO

To date, a major research effort on Behçet's syndrome (BS) has been concentrated on immunological aspects. Little is known about the metabolic reprogramming in BS. Citrate is an intermediary metabolite synthesized in mitochondria, and when transported into the cytosol by the mitochondrial citrate carrier-SLC25A1-encoded protein-it is cleaved into acetyl-CoA and oxaloacetate by ATP citrate lyase (ACLY). In induced macrophages, mitochondrial citrate is necessary for the production of inflammatory mediators. The aim of our study was to evaluate SLC25A1 and ACLY expression levels in BS patients. Following a power analysis undertaken on few random samples, the number of enrolled patients was set. Thirty-nine consecutive BS patients fulfilling ISG criteria, and 21 healthy controls suitable for age and sex were recruited. BS patients were divided into two groups according to the presence (active) or absence (inactive) of clinical manifestations. Real-time PCR experiments were performed on PBMCs to quantify SLC25A1 and ACLY mRNA levels. Data processing through the Kruskal-Wallis test and Dunn's multiple comparison test as post hoc showed higher SLC25A1 and ACLY mRNA levels in BS patients compared to those in healthy controls. Therefore, SLC25A1 and ACLY upregulation suggests that metabolic reprogramming in BS involves the citrate pathway dysregulation.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Síndrome de Behçet/metabolismo , Ácido Cítrico/metabolismo , Proteínas Mitocondriais/metabolismo , Acetilcoenzima A/química , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Inflamação , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Masculino , Síndrome Metabólica/metabolismo , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Transportadores de Ânions Orgânicos , Ácido Oxaloacético/metabolismo , RNA Mensageiro/metabolismo , Regulação para Cima
13.
Int J Mol Sci ; 19(1)2018 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-29316691

RESUMO

Sclerocarya birrea (A.Rich.) Hochst (Anacardiaceae) is a savannah tree that has long been used in sub-Saharan Africa as a medicinal remedy for numerous ailments. The purpose of this study was to increase the scientific knowledge about this plant by evaluating the total content of polyphenols, flavonoids, and tannins in the methanol extracts of the leaves and bark (MLE and MBE, respectively), as well as the in vitro antioxidant activity and biological activities of these extracts. Reported results show that MLE is rich in flavonoids (132.7 ± 10.4 mg of quercetin equivalents/g), whereas MBE has the highest content of tannins (949.5 ± 29.7 mg of tannic acid equivalents/g). The antioxidant activity was measured using four different in vitro tests: ß-carotene bleaching (BCB), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), O2-•, and nitric oxide (NO•) assays. In all cases, MBE was the most active compared to MLE and the standards used (Trolox and ascorbic acid). Furthermore, MBE and MLE were tested to evaluate their activity in HepG2 and fibroblast cell lines. A higher cytotoxic activity of MBE was evidenced and confirmed by more pronounced alterations in cell morphology. MBE induced cell death, triggering the intrinsic apoptotic pathway by reactive oxygen species (ROS) generation, which led to a loss of mitochondrial membrane potential with subsequent cytochrome c release from the mitochondria into the cytosol. Moreover, MBE showed lower cytotoxicity in normal human dermal fibroblasts, suggesting its potential as a selective anticancer agent.


Assuntos
Anacardiaceae/química , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Antioxidantes/química , Apoptose , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células Hep G2 , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Casca de Planta/química , Extratos Vegetais/química , Folhas de Planta/química , Polifenóis/análise , Espécies Reativas de Oxigênio/metabolismo , Taninos/análise
14.
Int J Mol Sci ; 19(11)2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30373165

RESUMO

Multiple myeloma (MM) is the second most common hematologic malignancy and, although the development of novel agents has improved survival of patients, to date, it remains incurable. Thus, newer and more effective therapeutic strategies against this malignancy are necessary. Plant extracts play an important role in anti-tumor drug discovery. For this reason, in the investigation of novel natural anti-MM agents, we evaluated the phytochemical profiles, in vitro antioxidant activity, and effects on MM cells of Azorella glabra (AG) Wedd. Total polyphenols (TPC), flavonoids (TFC), and terpenoids (TTeC) contents were different among samples and the richest fractions in polyphenols demonstrated a higher antioxidant activity in in vitro assays. Some fractions showed a dose and time dependent anti-proliferative activity on MM cells. The chloroform fraction (CHCl3) showed major effects in terms of reduction of cell viability, induction of apoptosis, and cell cycle arrest on MM cells. The apoptosis induction was also confirmed by the activation of caspase-3. Importantly, the CHCl3 fraction exhibited a negligible effect on the viability of healthy cells. These results encourage further investigations on AG extracts to identify specific bioactive compounds and to define their potential applications in MM.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Apiaceae/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Antioxidantes/química , Antioxidantes/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Flavonoides/química , Flavonoides/farmacologia , Humanos , Polifenóis/química , Polifenóis/farmacologia , Terpenos/química , Terpenos/farmacologia
15.
Cell Mol Biol Lett ; 22: 7, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28536638

RESUMO

BACKGROUND: Pseudoxanthoma elasticum (PXE) is characterized by progressive ectopic mineralization of elastic fibers in dermal, ocular and vascular tissues. No effective treatment exists. It is caused by inactivating mutations in the gene encoding for the ATP-binding cassette, sub-family C member 6 transporter (ABCC6), which is mainly expressed in the liver. The ABCC6 substrate (s) and the PXE pathomechanism remain unknown. Recent studies have shown that overexpression of ABCC6 in HEK293 cells results in efflux of ATP, which is rapidly converted into nucleoside monophosphates and pyrophosphate (PPi). Since the latter inhibits mineralization, it was proposed that the absence of circulating PPi in PXE patients results in the characteristic ectopic mineralization. These studies also demonstrated that the presence of ABCC6 modifies cell secretory activity and suggested that ABCC6 can change the cell phenotype. METHODS: Stable ABCC6 knockdown HepG2 clones were generated using small hairpin RNA (shRNA) technology. The intracellular glutathione and ROS levels were determined. Experiments using cell cycle analysis, real-time PCR and western blot were performed on genes involved in the senescence phenotype. RESULTS: To shed light on the physiological role of ABCC6, we focused on the phenotype of HepG2 cells that lack ABCC6 activity. Interestingly, we found that ABCC6 knockdown HepG2 cells show: 1) intracellular reductive stress; 2) cell cycle arrest in G1 phase; 3) upregulation of p21Cip p53 independent; and 4) downregulation of lamin A/C. CONCLUSIONS: These findings show that the absence of ABCC6 profoundly changes the HepG2 phenotype, suggesting that the PXE syndrome is a complex metabolic disease that is not exclusively related to the absence of pyrophosphate in the bloodstream.


Assuntos
Senescência Celular/genética , Pontos de Checagem da Fase G1 do Ciclo Celular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Estresse Oxidativo , Pseudoxantoma Elástico/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Técnicas de Inativação de Genes , Células Hep G2 , Humanos , Pseudoxantoma Elástico/genética , Pseudoxantoma Elástico/fisiopatologia , Regulação para Cima
16.
J Bioenerg Biomembr ; 48(3): 259-67, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26942607

RESUMO

ABCC6 is a human ATP binding cassette (ABC) transporter of the plasma membrane associated with Pseudoxanthoma elasticum (PXE), an autosomal recessive disease characterized by ectopic calcification of elastic fibers in dermal, ocular and vascular tissues. Similar to other ABC transporters, ABCC6 encloses the core structure of four domains: two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs) but also an additional N-terminal extension, including a transmembrane domain (TMD0) and a cytosolic loop (L0), which is only found in some members of ABCC subfamily, and for which the function remains to be established. To investigate the functional roles of this N-terminal region, we generated several domain deletion constructs of ABCC6, expressed in HEK293 and polarized LLC-PK1 cells. ABCC6 lacking TMD0 displayed full transport activity as the wild type protein. Unlike the wild type protein, ABCC6 without L0 was not targeted to the basolateral membrane. Moreover, homology modeling of L0 suggests that it forms an ATPase regulatory domain. Furthermore, we show that the expression of ABCC6 is linked to a cellular influx of Ca(2+). The results suggest that TMD0 is not required for transport function and that L0 maintains ABCC6 in a targeting-competent state for the basolateral membrane and might be involved in regulating the NBDs. These findings shed new light on a possible physiological function of ABCC6 and may explain some of the hallmarks of the clinical features associated with PXE that could contribute to the identification of novel pharmacological targets.


Assuntos
Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Fragmentos de Peptídeos/fisiologia , Domínios Proteicos/fisiologia , Animais , Transporte Biológico Ativo , Cálcio/metabolismo , Polaridade Celular , Células HEK293 , Humanos , Células LLC-PK1 , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Pseudoxantoma Elástico/tratamento farmacológico , Suínos
17.
Cell Mol Biol Lett ; 19(4): 517-26, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25169437

RESUMO

ABCC6 protein is an ATP-dependent transporter that is mainly found in the basolateral plasma membrane of hepatocytes. ABCC6 deficiency is the primary cause of several forms of ectopic mineralization syndrome. Mutations in the human ABCC6 gene cause pseudoxanthoma elasticum (PXE), an autosomal recessive disease characterized by ectopic calcification of the elastic fibers in dermal, ocular and vascular tissues. Mutations in the mouse ABCC6 gene were also associated with dystrophic cardiac calcification. Reduced levels of ABCC6 protein were found in a ß-thalassemic mouse model. Moreover, some cases of generalized arterial calcification in infancy are due to ABCC6 mutations. In order to study the role of ABCC6 in the pathogenesis of ectopic mineralization, the expressions of genes involved in this process were evaluated in HepG2 cells upon stable knockdown of ABCC6 by small hairpin RNA (shRNA) technology. ABCC6 knockdown in HepG2 cells causes a significant upregulation of the genes promoting mineralization, such as TNAP, and a parallel downregulation of genes with anti-mineralization activity, such as NT5E, Fetuin A and Osteopontin. Although the absence of ABCC6 has been already associated with ectopic mineralization syndromes, this study is the first to show a direct relationship between reduced ABCC6 levels and the expression of pro-mineralization genes in hepatocytes.


Assuntos
Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Fosfatase Alcalina , Calcinose/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo
18.
J Bioenerg Biomembr ; 45(1-2): 1-13, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23054077

RESUMO

The 2-oxoglutarate carrier (OGC) belongs to the mitochondrial carrier protein family whose members are responsible for the exchange of metabolites, cofactors and nucleotides between the cytoplasm and mitochondrial matrix. Initially, OGC was characterized by determining substrate specificity, kinetic parameters of transport, inhibitors and molecular probes that form covalent bonds with specific residues. It was shown that OGC specifically transports oxoglutarate and certain carboxylic acids. The substrate specificity combination of OGC is unique, although many of its substrates are also transported by other mitochondrial carriers. The abundant recombinant expression of bovine OGC in Escherichia coli and its ability to functionally reconstitute into proteoliposomes made it possible to deduce the individual contribution of each and every residue of OGC to the transport activity by a complete set of cys-scanning mutants. These studies give experimental support for a substrate binding site constituted by three major contact points on the even-numbered α-helices and identifies other residues as important for transport function through their crucial positions in the structure for conserved interactions and the conformational changes of the carrier during the transport cycle. The results of these investigations have led to utilize OGC as a model protein for understanding the transport mechanism of mitochondrial carriers.


Assuntos
Citoplasma , Ácidos Cetoglutáricos , Proteínas de Membrana Transportadoras , Mitocôndrias , Proteínas Mitocondriais , Modelos Biológicos , Substituição de Aminoácidos , Animais , Transporte Biológico Ativo/fisiologia , Bovinos , Citoplasma/química , Citoplasma/genética , Citoplasma/metabolismo , Escherichia coli , Humanos , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutagênese , Mutação de Sentido Incorreto , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
19.
Cell Biol Int ; 2012 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-22280466

RESUMO

This paper published as an Immediate Publication on 26 January 2012 was withdrawn by the Editorial Board of Cell Biology International on 16 February 2012.

20.
Pathophysiology ; 29(2): 173-186, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35645325

RESUMO

The ATP-binding cassette sub-family C member 6 transporter (ABCC6) is mainly found in the basolateral plasma membrane of hepatic and kidney cells. In hepatocarcinoma HepG2 cells, ABCC6 was involved in cell migration. In the present study, we investigated the role of ABCC6 in colon cancer evaluating the effect of Quercetin and Probenecid, inhibitors of the ectonucleotidase NT5E and ABCC6, respectively, on migration rate of Caco2 and HT29 cell lines. Both drugs reduced cell migration analyzed by scratch test. Gene and protein expression were evaluated by quantitative reverse-transcription PCR (RT-qPCR) and Western blot, respectively. In Caco2 cells, in which ABCC6 is significantly expressed, the addition of ATP restored motility, suggesting the involvement of P2 receptors. Contrary to HT29 cells, where the expression of ABCC6 is negligible but remarkable to the level of NT5E, no effect of ATP addition was detected, suggesting a main role on their migration by the phosphatidylinositol 3'-kinase (PI3K)/Akt system. Therefore, in some colon cancers in which ABCC6 is overexpressed, it may have a primary role in controlling the extracellular purinergic system by feeding it with ATP, thus representing a potential target for a therapy aimed at mitigating invasiveness of those type of cancers.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa