Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
PLoS Comput Biol ; 17(5): e1009040, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34043616

RESUMO

Dorsal-ventral patterning of the Drosophila embryo depends on the NFκB superfamily transcription factor Dorsal (Dl). Toll receptor activation signals for degradation of the IκB inhibitor Cactus (Cact), leading to a ventral-to-dorsal nuclear Dl gradient. Cact is critical for Dl nuclear import, as it binds to and prevents Dl from entering the nuclei. Quantitative analysis of cact mutants revealed an additional Cact function to promote Dl nuclear translocation in ventral regions of the embryo. To investigate this dual Cact role, we developed a predictive model based on a reaction-diffusion regulatory network. This network distinguishes non-uniform Toll-dependent Dl nuclear import and Cact degradation, from the Toll-independent processes of Cact degradation and reversible nuclear-cytoplasmic Dl flow. In addition, it incorporates translational control of Cact levels by Dl. Our model successfully reproduces wild-type data and emulates the Dl nuclear gradient in mutant dl and cact allelic combinations. Our results indicate that the dual role of Cact depends on the dynamics of Dl-Cact trimers along the dorsal-ventral axis: In the absence of Toll activation, free Dl-Cact trimers retain Dl in the cytoplasm, limiting the flow of Dl into the nucleus; in ventral-lateral regions, Dl-Cact trimers are recruited by Toll activation into predominant signaling complexes and promote Dl nuclear translocation. Simulations suggest that the balance between Toll-dependent and Toll-independent processes are key to this dynamics and reproduce the full assortment of Cact effects. Considering the high evolutionary conservation of these pathways, our analysis should contribute to understanding NFκB/c-Rel activation in other contexts such as in the vertebrate immune system and disease.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Quinase I-kappa B/metabolismo , Modelos Biológicos , NF-kappa B/metabolismo , Fosfoproteínas/metabolismo , Animais , Transporte Proteico , Transdução de Sinais
2.
Microbiology (Reading) ; 164(3): 395-399, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29458678

RESUMO

Ornithine lipids (OLs) are phosphorus-free lipids found in many bacteria grown under phosphate deprivation, a condition that activates the PhoBR system and leads to phosphate uptake and metabolism. Two OL synthesis pathways have already been described. One depends on OlsB and OlsA acyltransferases to add, respectively, the first and second acyl chains to an ornithine molecule. The other pathway is carried out by OlsF, a bifunctional enzyme responsible for both acylation steps. Although Vibrio cholerae lacks olsBA genes, an olsF homologue (vc0489) was identified in its genome. In this work we demonstrated that V. cholerae produces OLs and expresses vc0489 in response to phosphate depletion, in a PhoBR-dependent manner. In Escherichia coli, under similar condition, vc0489 expression leads to OL accumulation. These results indicate a strong connection between OL synthesis and VC0489 from V. cholerae and, for the first time, a direct regulation of an olsF homologue by the PhoBR system.


Assuntos
Aciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Ornitina/análogos & derivados , Fosfatos/deficiência , Vibrio cholerae/metabolismo , Aciltransferases/genética , Proteínas de Bactérias/genética , Sítios de Ligação , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Lipídeos , Lipídeos de Membrana/química , Mutação , Ornitina/metabolismo , Fosfatos/metabolismo , Vibrio cholerae/genética
3.
Basic Res Cardiol ; 112(5): 52, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28695353

RESUMO

Ischaemic preconditioning (IPC) provides myocardial resistance to ischaemia/reperfusion (I/R) injuries. The protection afforded by IPC is not limited to the target tissue but extends to remote tissues, suggesting a mechanism mediated by humoral factors. The aim of the present study was to identify the humoral factors that are responsible for the cardioprotection induced by the coronary effluent transferred from IPC to naïve hearts. Isolated rat hearts were submitted to IPC (three cycles of 5 min I/R) before 30-min global ischaemia and 60-min reperfusion. The coronary effluent (Efl_IPC) collected during IPC was fractionated by ultrafiltration in different molecular weight ranges (<3, 3-5, 5-10, 10-30, 30-50, and >50 kDa) and evaluated for cardioprotective effects by perfusion before I/R in naïve hearts. Only the <3, 5-10 and <10 kDa fractions of hydrophobic eluate reduced I/R injuries. The cardioprotective effect of the 5-10 fraction was blocked by KATP channel blockers and a PKC inhibitor. An Efl_IPC proteomic analysis revealed 14 cytoprotection-related proteins in 4-12 kDa peptides. HSP10 perfusion protected the heart against I/R injuries. These data provide insights into the mechanisms of cardioprotection in humoral factors released by IPC. Cardioprotection is afforded by hydrophobic peptides in the 4-12 kDa size range, which activate pathways that are dependent on PKC and KATP. Fourteen 4-12 kDa peptides were identified, suggesting a potential therapeutic role for these molecules in ischaemic diseases. One of these, HSP10, identified by mass spectrometry, reduced I/R injuries and may be a potential candidate as a therapeutic target.


Assuntos
Chaperonina 10/metabolismo , Precondicionamento Isquêmico Miocárdico , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Função Ventricular Esquerda , Animais , Cromatografia Líquida , Modelos Animais de Doenças , Preparação de Coração Isolado , Canais KATP/metabolismo , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Proteína Quinase C/metabolismo , Proteômica/métodos , Ratos Wistar , Transdução de Sinais , Espectrometria de Massas por Ionização por Electrospray , Volume Sistólico , Espectrometria de Massas em Tandem , Fatores de Tempo , Pressão Ventricular
4.
Biochim Biophys Acta ; 1848(2): 680-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25462170

RESUMO

A putative porin function has been assigned to VCA1008 of Vibrio cholerae. Its coding gene, vca1008, is expressed upon colonization of the small intestine in infant mice and human volunteers, and is essential for infection. In vitro, vca1008 is expressed under inorganic phosphate limitation and, in this condition, VCA1008 is the major outer membrane protein of the bacterium. Here, we provide the first functional characterization of VCA1008 reconstituted into planar lipid bilayers. Our main findings were: 1) VCA1008 forms an ion channel that, at high voltage (~±100 mV), presents a voltage-dependent activity and displays closures typical of trimeric porins, with a conductance of 4.28±0.04 nS (n=164) in 1M KCl; 2) It has a preferred selectivity for anions over cations; 3) Its conductance saturates with increasing inorganic phosphate concentration, suggesting VCA1008 contains binding site(s) for this anion; 4) Its ion selectivity is controlled by both fixed charged residues within the channel and diffusion along the pore; 5) Partitioning of poly (ethylene glycol)s (PEGs) of different molecular mass suggests that VCA1008 channel has a pore exclusion limit of 0.9 nm.


Assuntos
Proteínas de Bactérias/química , Bicamadas Lipídicas/química , Fosfatos/química , Porinas/química , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Transporte Biológico , Difusão , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Ativação do Canal Iônico , Cinética , Bicamadas Lipídicas/metabolismo , Camundongos , Fosfatos/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Porinas/genética , Porinas/metabolismo , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eletricidade Estática , Vibrio cholerae/química
5.
Microbiology (Reading) ; 162(11): 1955-1962, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27665757

RESUMO

All cells are subjected to oxidative stress, a condition under which reactive oxygen species (ROS) production exceeds elimination. Bacterial defences against ROS include synthesis of antioxidant enzymes like peroxidases and catalases. Vibrio cholerae can produce two distinct catalases, KatB and KatG, which contribute to ROS homeostasis. In this study, we analysed the mechanism behind katG and katB expression in two V. cholerae O1 pandemic strains, O395 and N16961, of classical and El Tor biotypes, respectively. Both strains express these genes, especially at stationary phase. However, El Tor N16961 produces higher KatB and KatG levels and is much more resistant to peroxide challenge than the classical strain, confirming a direct relationship between catalase activity and oxidative stress resistance. Moreover, we showed that katG and katB expression levels depend on inorganic phosphate (Pi) availability, in contrast to other bacterial species. In N16961, katB and katG expression is reduced under Pi limitation relative to Pi abundance. Total catalase activity in N16961 and its phoB mutant cells was similar, independently of growth conditions, indicating that the PhoB/PhoR system is not required for katB and katG expression. However, N16961 cells from Pi-limited cultures were 50-100-fold more resistant to H2O2 challenge and accumulated less ROS than phoB mutant cells. Together, these findings suggest that, besides KatB and KatG, the PhoB/PhoR system is an important protective factor against ROS in V. cholerae N16961. They also corroborate previous results from our and other groups, suggesting that the PhoB/PhoR system is fundamental for V. cholerae biology.


Assuntos
Proteínas de Bactérias/metabolismo , Catalase/metabolismo , Estresse Oxidativo , Vibrio cholerae O1/metabolismo , Proteínas de Bactérias/genética , Catalase/genética , Regulação Bacteriana da Expressão Gênica , Peróxido de Hidrogênio/farmacologia , Vibrio cholerae O1/efeitos dos fármacos , Vibrio cholerae O1/enzimologia , Vibrio cholerae O1/genética
6.
Biophys J ; 109(6): 1179-89, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26255588

RESUMO

Cyclin-dependent kinases (CDKs) and their associated regulatory cyclins are central for timely regulation of cell-cycle progression. They constitute attractive pharmacological targets for development of anticancer therapeutics, since they are frequently deregulated in human cancers and contribute to sustained, uncontrolled tumor proliferation. Characterization of their structural/dynamic features is essential to gain in-depth insight into structure-activity relationships. In addition, the identification of druggable pockets or key intermediate conformations yields potential targets for the development of novel classes of inhibitors. Structural studies of CDK2/cyclin A have provided a wealth of information concerning monomeric/heterodimeric forms of this kinase. There is, however, much less structural information for other CDK/cyclin complexes, including CDK4/cyclin D1, which displays an alternative (open) position of the cyclin partner relative to CDK, contrasting with the closed CDK2/cyclin A conformation. In this study, we carried out normal-mode analysis and enhanced sampling simulations with our recently developed method, molecular dynamics with excited normal modes, to understand the conformational equilibrium on these complexes. Interestingly, the lowest-frequency normal mode computed for each complex described the transition between the open and closed conformations. Exploration of these motions with an explicit-solvent representation using molecular dynamics with excited normal modes confirmed that the closed conformation is the most stable for the CDK2/cyclin A complex, in agreement with their experimentally available structures. On the other hand, we clearly show that an open↔closed equilibrium may exist in CDK4/cyclin D1, with closed conformations resembling that captured for CDK2/cyclin A. Such conformational preferences may result from the distinct distributions of frustrated contacts in each complex. Using the same approach, the putative roles of the Thr(160) phosphoryl group and the T-loop conformation were investigated. These results provide a dynamic view of CDKs revealing intermediate conformations not yet characterized for CDK members other than CDK2, which will be useful for the design of inhibitors targeting critical conformational transitions.


Assuntos
Ciclina A/metabolismo , Ciclina D1/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Ciclina A/química , Ciclina D1/química , Quinase 2 Dependente de Ciclina/química , Quinase 4 Dependente de Ciclina/química , Simulação de Dinâmica Molecular , Movimento (Física) , Conformação Proteica , Solventes/química , Relação Estrutura-Atividade , Água/química
7.
BMC Genomics ; 15 Suppl 7: S5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25573486

RESUMO

BACKGROUND: Over the last decades, a vast structural knowledge has been gathered on the HIV-1 protease (PR). Noticeably, most of the studies focused the B-subtype, which has the highest prevalence in developed countries. Accordingly, currently available anti-HIV drugs target this subtype, with considerable benefits for the corresponding patients. RESULTS: Herein, we used molecular dynamics simulations to investigate the role of this polymorphism on the interaction of PR with six of its natural cleavage-sites substrates. CONCLUSIONS: With multiple approaches and analyses we identified structural and dynamical determinants associated with the changes found in the binding affinity of the M36I variant. This mutation influences the flexibility of both PR and its complexed substrate. The observed impact of M36I, suggest that combination with other non-B subtype polymorphisms, could lead to major effects on the interaction with the 12 known cleavage sites, which should impact the virion maturation.


Assuntos
Protease de HIV/genética , Protease de HIV/metabolismo , Polimorfismo Genético , Sítios de Ligação/genética , Simulação por Computador , Protease de HIV/química , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica/genética , Especificidade por Substrato/genética , Proteínas Virais/química , Proteínas Virais/metabolismo
8.
Dev Biol ; 370(2): 165-72, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22841642

RESUMO

In Drosophila embryonic development, the Bicoid (Bcd) protein establishes positional information of downstream developmental genes like hunchback (hb), which has a strong anterior expression and a sharp on-off boundary in the mid-embryo. The role of Bcd cooperative binding in the positioning of the Hb pattern has been previously demonstrated. However, there are discrepancies in the reported results about the role of this mechanism in the sharp Hb border. Here, we determined the Hill coefficient (nH) required for Bcd to generate the sharp border of Hb in wild-type (WT) embryos. We found that an n(H) of approximately 6.3 (s.d. 1.4) and 10.8 (s.d. 4.0) is required to account for Hb sharpness at early and late cycle 14A, respectively. Additional mechanisms are possibly required because the high nH is likely unachievable for Bcd binding to the hb promoter. To test this idea, we determined the nH required to pattern the Hb profile of 15 embryos expressing an hb14F allele that is defective in self-activation and found nH to be 3.0 (s.d. 1.0). This result indicates that in WT embryos, the hb self-activation is important for Hb sharpness. Corroborating our results, we also found a progressive increase in the required value of n(H) spanning from 4.0 to 9.2 by determining this coefficient from averaged profiles of eight temporal classes at cycle 14A (T1 to T8). Our results indicate that there is a transition in the mechanisms responsible for the sharp Hb border during cycle 14A: in early stages of this cycle, Bcd cooperative binding is primarily responsible for Hb sharpness; in late cycle 14A, hb self-activation becomes the dominant mechanism.


Assuntos
Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Embrião não Mamífero/metabolismo , Proteínas de Homeodomínio/metabolismo , Transativadores/metabolismo , Animais , Padronização Corporal , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Genes Controladores do Desenvolvimento , Fatores de Transcrição/metabolismo
9.
J Chem Theory Comput ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36622950

RESUMO

Molecular dynamics with excited normal modes (MDeNM) is an enhanced sampling method for exploring conformational changes in proteins with minimal biases. The excitation corresponds to injecting kinetic energy along normal modes describing intrinsic collective motions. Herein, we developed a new automated open-source implementation, MDexciteR (https://github.com/mcosta27/MDexciteR), enabling the integration of MDeNM with two commonly used simulation programs with GPU support. Second, we generalized the method to include the excitation of principal components calculated from experimental ensembles. Finally, we evaluated whether the use of coarse-grained normal modes calculated with elastic network representations preserved the performance and accuracy of the method. The advantages and limitations of these new approaches are discussed based on results obtained for three different protein test cases: two globular and a protein/membrane system.

10.
Cell Rep ; 42(4): 112320, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37027306

RESUMO

The functional properties of G protein-coupled receptors (GPCRs) are intimately associated with the different components in their cellular environment. Among them, sodium ions have been proposed to play a substantial role as endogenous allosteric modulators of GPCR-mediated signaling. However, this sodium effect and the underlying mechanisms are still unclear for most GPCRs. Here, we identified sodium as a negative allosteric modulator of the ghrelin receptor GHSR (growth hormone secretagogue receptor). Combining 23Na-nuclear magnetic resonance (NMR), molecular dynamics, and mutagenesis, we provide evidence that, in GHSR, sodium binds to the allosteric site conserved in class A GPCRs. We further leveraged spectroscopic and functional assays to show that sodium binding shifts the conformational equilibrium toward the GHSR-inactive ensemble, thereby decreasing basal and agonist-induced receptor-catalyzed G protein activation. All together, these data point to sodium as an allosteric modulator of GHSR, making this ion an integral component of the ghrelin signaling machinery.


Assuntos
Receptores de Grelina , Sódio , Regulação Alostérica , Sítio Alostérico , Grelina/metabolismo , Íons , Receptores de Grelina/metabolismo , Transdução de Sinais , Sódio/metabolismo
11.
Mol Plant Microbe Interact ; 24(5): 562-76, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21190439

RESUMO

Gluconacetobacter diazotrophicus is a plant-growth-promoting bacterium that colonizes sugarcane. In order to investigate molecular aspects of the G. diazotrophicus-sugarcane interaction, we performed a quantitative mass spectrometry-based proteomic analysis by (15)N metabolic labeling of bacteria, root samples, and co-cultures. Overall, more than 400 proteins were analyzed and 78 were differentially expressed between the plant-bacterium interaction model and control cultures. A comparative analysis of the G. diazotrophicus in interaction with two distinct genotypes of sugarcane, SP70-1143 and Chunee, revealed proteins with fundamental roles in cellular recognition. G. diazotrophicus presented proteins involved in adaptation to atypical conditions and signaling systems during the interaction with both genotypes. However, SP70-1143 and Chunee, sugarcane genotypes with high and low contribution of biological nitrogen fixation, showed divergent responses in contact with G. diazotrophicus. The SP70-1143 genotype overexpressed proteins from signaling cascades and one from a lipid metabolism pathway, whereas Chunee differentially synthesized proteins involved in chromatin remodeling and protein degradation pathways. In addition, we have identified 30 bacterial proteins in the roots of the plant samples; from those, nine were specifically induced by plant signals. This is the first quantitative proteomic analysis of a bacterium-plant interaction, which generated insights into early signaling of the G. diazotrophicus-sugarcane interaction.


Assuntos
Proteínas de Bactérias/análise , Gluconacetobacter/metabolismo , Proteoma/análise , Saccharum/microbiologia , Simbiose/fisiologia , Adaptação Fisiológica , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Técnicas de Cocultura , Regulação Bacteriana da Expressão Gênica , Genótipo , Gluconacetobacter/genética , Gluconacetobacter/fisiologia , Fixação de Nitrogênio/genética , Isótopos de Nitrogênio/análise , Isótopos de Nitrogênio/metabolismo , Proteoma/fisiologia , Saccharum/genética , Saccharum/crescimento & desenvolvimento , Saccharum/metabolismo , Transdução de Sinais
12.
Front Microbiol ; 12: 602653, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776949

RESUMO

Vibrio parahaemolyticus strains recovered from human diarrheal stools (one in 1975 and two in 2001) and environmental sources (four, between 2008 and 2010) were investigated for the presence of virulence genes (trh, tdh, and vpadF), pandemic markers (orf8, toxRS new), and with respect to their pathogenic potential in two systemic infection models. Based only on the presence or absence of these genetic markers, they were classified as follows: the environmental strains were non-pathogenic, whereas among the clinical strains, the one isolated in 1975 was pathogenic (non-pandemic), and the other two were pathogenic (pandemic). The pathogenic potential of the strains was evaluated in mice and Galleria mellonella larvae infection models, and except for the clinical (pathogenic, non-pandemic) isolate, the others produced lethal infection in both organisms, regardless of their source, serotype, and genotype (tdh, orf8, toxRS new, and vpadF). Based on mice and larval mortality rates, the strains were then grouped according to virulence (high, intermediate, and avirulent), and remarkably similar results were obtained by using these models: The clinical strain (pathogenic and non-pandemic) was classified as avirulent, and other strains (four non-pathogenic and two pandemic) were considered of high or intermediate virulence. In summary, these findings demonstrate that G. mellonella larvae can indeed be used as an alternative model to study the pathogenicity of V. parahaemolyticus. Moreover, they raise doubts about the use of traditional virulence markers to predict pathogenesis of the species and show that reliable models are indispensable to determine the pathogenic potential of environmental isolates considered non-pathogenic, based on the absence of the long-standing virulence indicators.

13.
Nat Commun ; 12(1): 3938, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168117

RESUMO

The membrane is an integral component of the G protein-coupled receptor signaling machinery. Here we demonstrate that lipids regulate the signaling efficacy and selectivity of the ghrelin receptor GHSR through specific interactions and bulk effects. We find that PIP2 shifts the conformational equilibrium of GHSR away from its inactive state, favoring basal and agonist-induced G protein activation. This occurs because of a preferential binding of PIP2 to specific intracellular sites in the receptor active state. Another lipid, GM3, also binds GHSR and favors G protein activation, but mostly in a ghrelin-dependent manner. Finally, we find that not only selective interactions but also the thickness of the bilayer reshapes the conformational repertoire of GHSR, with direct consequences on G protein selectivity. Taken together, this data illuminates the multifaceted role of the membrane components as allosteric modulators of how ghrelin signal could be propagated.


Assuntos
Fosfatidilinositol 4,5-Difosfato/metabolismo , Receptores de Grelina/química , Receptores de Grelina/metabolismo , Regulação Alostérica , Sítios de Ligação , Membrana Celular/química , Membrana Celular/metabolismo , Cisteína/genética , Transferência Ressonante de Energia de Fluorescência , Gangliosídeo G(M3)/metabolismo , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Lipídeos/química , Mutação , Fosfatidilinositol 4,5-Difosfato/química , Conformação Proteica , Receptores de Grelina/genética , Transdução de Sinais
14.
Elife ; 102021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34477105

RESUMO

There is increasing support for water molecules playing a role in signal propagation through G protein-coupled receptors (GPCRs). However, exploration of the hydration features of GPCRs is still in its infancy. Here, we combined site-specific labeling with unnatural amino acids to molecular dynamics to delineate how local hydration of the ghrelin receptor growth hormone secretagogue receptor (GHSR) is rearranged upon activation. We found that GHSR is characterized by a specific hydration pattern that is selectively remodeled by pharmacologically distinct ligands and by the lipid environment. This process is directly related to the concerted movements of the transmembrane domains of the receptor. These results demonstrate that the conformational dynamics of GHSR are tightly coupled to the movements of internal water molecules, further enhancing our understanding of the molecular bases of GPCR-mediated signaling.


Assuntos
Grelina , Receptores Acoplados a Proteínas G , Receptores de Grelina , Humanos , Ligantes , Transdução de Sinais
15.
BMC Genomics ; 11 Suppl 5: S5, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21210971

RESUMO

BACKGROUND: Cathepsin B (catB) is a promising target for anti-cancer drug design due to its implication in several steps of tumorigenesis. catB activity and inhibition are pH-dependent, making it difficult to identify efficient inhibitor candidates for clinical trials. In addition it is known that heparin binding stabilizes the enzyme in alkaline conditions. However, the molecular mechanism of stabilization is not well understood, indicating the need for more detailed structural and dynamic studies in order to clarify the influence of pH and heparin binding on catB stability. RESULTS: Our pKa calculations of catB titratable residues revealed distinct protonation states under different pH conditions for six key residues, of which four lie in the crucial interdomain interface. This implies changes in the overall charge distribution at the catB surface, as revealed by calculation of the electrostatic potential. We identified two basic surface regions as possible heparin binding sites, which were confirmed by docking calculations. Molecular dynamics (MD) of both apo catB and catB-heparin complexes were performed using protonation states for catB residues corresponding to the relevant acidic or alkaline conditions. The MD of apo catB at pH 5.5 was very stable, and presented the highest number and occupancy of hydrogen bonds within the inter-domain interface. In contrast, under alkaline conditions the enzyme's overall flexibility was increased: interactions between active site residues were lost, helical content decreased, and domain separation was observed as well as high-amplitude motions of the occluding loop - a main target of drug design studies. Essential dynamics analysis revealed that heparin binding modulates large amplitude motions promoting rearrangement of contacts between catB domains, thus favoring the maintenance of helical content as well as active site stability. CONCLUSIONS: The results of our study contribute to unraveling the molecular events involved in catB inactivation in alkaline pH, highlighting the fact that protonation changes of few residues can alter the overall dynamics of an enzyme. Moreover, we propose an allosteric role for heparin in the regulation of catB stability in such a manner that the restriction of enzyme flexibility would allow the establishment of stronger contacts and thus the maintenance of overall structure.


Assuntos
Regulação Alostérica/fisiologia , Catepsina B/metabolismo , Heparina/metabolismo , Modelos Moleculares , Regulação Alostérica/genética , Sítios de Ligação/genética , Catepsina B/química , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Eletricidade Estática
16.
BMC Genomics ; 11 Suppl 5: S7, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21210973

RESUMO

BACKGROUND: G. diazotrophicus and A. vinelandii are aerobic nitrogen-fixing bacteria. Although oxygen is essential for the survival of these organisms, it irreversibly inhibits nitrogenase, the complex responsible for nitrogen fixation. Both microorganisms deal with this paradox through compensatory mechanisms. In A. vinelandii a conformational protection mechanism occurs through the interaction between the nitrogenase complex and the FeSII protein. Previous studies suggested the existence of a similar system in G. diazotrophicus, but the putative protein involved was not yet described. This study intends to identify the protein coding gene in the recently sequenced genome of G. diazotrophicus and also provide detailed structural information of nitrogenase conformational protection in both organisms. RESULTS: Genomic analysis of G. diazotrophicus sequences revealed a protein coding ORF (Gdia0615) enclosing a conserved "fer2" domain, typical of the ferredoxin family and found in A. vinelandii FeSII. Comparative models of both FeSII and Gdia0615 disclosed a conserved beta-grasp fold. Cysteine residues that coordinate the 2[Fe-S] cluster are in conserved positions towards the metallocluster. Analysis of solvent accessible residues and electrostatic surfaces unveiled an hydrophobic dimerization interface. Dimers assembled by molecular docking presented a stable behaviour and a proper accommodation of regions possibly involved in binding of FeSII to nitrogenase throughout molecular dynamics simulations in aqueous solution. Molecular modeling of the nitrogenase complex of G. diazotrophicus was performed and models were compared to the crystal structure of A. vinelandii nitrogenase. Docking experiments of FeSII and Gdia0615 with its corresponding nitrogenase complex pointed out in both systems a putative binding site presenting shape and charge complementarities at the Fe-protein/MoFe-protein complex interface. CONCLUSIONS: The identification of the putative FeSII coding gene in G. diazotrophicus genome represents a large step towards the understanding of the conformational protection mechanism of nitrogenase against oxygen. In addition, this is the first study regarding the structural complementarities of FeSII-nitrogenase interactions in diazotrophic bacteria. The combination of bioinformatic tools for genome analysis, comparative protein modeling, docking calculations and molecular dynamics provided a powerful strategy for the elucidation of molecular mechanisms and structural features of FeSII-nitrogenase interaction.


Assuntos
Azotobacter vinelandii/enzimologia , Gluconacetobacter/enzimologia , Modelos Moleculares , Nitrogenase/metabolismo , Oxigênio/metabolismo , Conformação Proteica , Sequência de Aminoácidos , Azotobacter vinelandii/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biologia Computacional , Genômica , Gluconacetobacter/genética , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Fixação de Nitrogênio , Nitrogenase/química , Nitrogenase/genética , Ligação Proteica , Eletricidade Estática
17.
PLoS Comput Biol ; 4(9): e1000184, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-18818726

RESUMO

During embryonic development, the positional information provided by concentration gradients of maternal factors directs pattern formation by providing spatially dependent cues for gene expression. In the fruit fly, Drosophila melanogaster, a classic example of this is the sharp on-off activation of the hunchback (hb) gene at midembryo, in response to local concentrations of the smooth anterior-posterior Bicoid (Bcd) gradient. The regulatory region for hb contains multiple binding sites for the Bcd protein as well as multiple binding sites for the Hb protein. Some previous studies have suggested that Bcd is sufficient for properly sharpened Hb expression, yet other evidence suggests a need for additional regulation. We experimentally quantified the dynamics of hb gene expression in flies that were wild-type, were mutant for hb self-regulation or Bcd binding, or contained an artificial promoter construct consisting of six Bcd and two Hb sites. In addition to these experiments, we developed a reaction-diffusion model of hb transcription, with Bcd cooperative binding and hb self-regulation, and used Zero Eigenvalue Analysis to look for multiple stationary states in the reaction network. Our model reproduces the hb developmental dynamics and correctly predicts the mutant patterns. Analysis of our model indicates that the Hb sharpness can be produced by spatial bistability, in which hb self-regulation produces two stable levels of expression. In the absence of self-regulation, the bistable behavior vanishes and Hb sharpness is disrupted. Bcd cooperative binding affects the position where bistability occurs but is not itself sufficient for a sharp Hb pattern. Our results show that the control of Hb sharpness and positioning, by hb self-regulation and Bcd cooperativity, respectively, are separate processes that can be altered independently. Our model, which matches the changes in Hb position and sharpness observed in different experiments, provides a theoretical framework for understanding the data and in particular indicates that spatial bistability can play a central role in threshold-dependent reading mechanisms of positional information.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Modelos Genéticos , Fatores de Transcrição/genética , Animais , Sítios de Ligação/genética , Padronização Corporal/genética , Biologia Computacional , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Genes de Insetos , Genótipo , Proteínas de Homeodomínio/metabolismo , Mutação , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
18.
Proteomics ; 8(8): 1631-44, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18340630

RESUMO

This is the first broad proteomic description of Gluconacetobacter diazotrophicus, an endophytic bacterium, responsible for the major fraction of the atmospheric nitrogen fixed in sugarcane in tropical regions. Proteomic coverage of G. diazotrophicus PAL5 was obtained by two independent approaches: 2-DE followed by MALDI-TOF or TOF-TOF MS and 1-DE followed by chromatography in a C18 column online coupled to an ESI-Q-TOF or ESI-IT mass spectrometer. The 583 identified proteins were sorted into functional categories and used to describe potential metabolic pathways for nucleotides, amino acids, carbohydrates, lipids, cofactors and energy production, according to the Enzyme Commission of Enzyme Nomenclature (EC) and Kyoto Encyclopedia of genes and genomes (KEGG) databases. The identification of such proteins and their possible insertion in conserved biochemical routes will allow comparisons between G. diazotrophicus and other bacterial species. Furthermore, the 88 proteins classified as conserved unknown or unknown constitute a potential target for functional genomic studies, aiming at the understanding of protein function and regulation of gene expression. The knowledge of metabolic fundamentals and coordination of these actions are crucial for the rational, safe and sustainable interference on crops. The entire dataset, including peptide sequence information, is available as Supporting Information and is the major contribution of this work.


Assuntos
Proteínas de Bactérias/metabolismo , Gluconacetobacter/metabolismo , Proteoma/análise , Saccharum/crescimento & desenvolvimento , Eletroforese em Gel Bidimensional , Gluconacetobacter/crescimento & desenvolvimento , Saccharum/microbiologia , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
19.
Front Microbiol ; 9: 424, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593677

RESUMO

Cyanobacteria tend to become the dominant phytoplankton component in eutrophic freshwater environments during warmer seasons. However, general observations of cyanobacterial adaptive advantages in these circumstances are insufficient to explain the prevalence of one species over another in a bloom period, which may be related to particular strategies and interactions with other components of the plankton community. In this study, we present an integrative view of a mixed cyanobacterial bloom occurring during a warm, rainy period in a tropical hydropower reservoir. We used high-throughput sequencing to follow temporal shifts in the dominance of cyanobacterial genera and shifts in the associated heterotrophic bacteria community. The bloom occurred during late spring-summer and included two distinct periods. The first period corresponded to Microcystis aeruginosa complex (MAC) dominance with a contribution from Dolichospermum circinale; this pattern coincided with high water retention time and low transparency. The second period corresponded to Cylindrospermopsis raciborskii and Synechococcus spp. dominance, and the reservoir presented lower water retention time and higher water transparency. The major bacterial phyla were primarily Cyanobacteria and Proteobacteria, followed by Actinobacteria, Bacteroidetes, Verrucomicrobia, and Planctomycetes. Temporal shifts in the dominance of cyanobacterial genera were not only associated with physical features of the water but also with shifts in the associated heterotrophic bacteria. The MAC bloom was associated with a high abundance of Bacteroidetes, particularly Cytophagales. In the second bloom period, Planctomycetes increased in relative abundance, five Planctomycetes OTUs were positively correlated with Synechococcus or C. raciborskii OTUs. Our results suggest specific interactions of the main cyanobacterial genera with certain groups of the heterotrophic bacterial community. Thus, considering biotic interactions may lead to a better understanding of the shifts in cyanobacterial dominance.

20.
Front Immunol ; 9: 671, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29706955

RESUMO

Few studies investigate the major protein antigens targeted by the antibody diversity of infected mice with Trypanosoma cruzi. To detect global IgG antibody specificities, sera from infected mice were immunoblotted against whole T. cruzi extracts. By proteomic analysis, we were able to identify the most immunogenic T. cruzi proteins. We identified three major antigens as pyruvate phosphate dikinase, Hsp-85, and ß-tubulin. The major protein band recognized by host IgG was T. cruzi ß-tubulin. The T. cruzi ß-tubulin gene was cloned, expressed in E. coli, and recombinant T. cruzi ß-tubulin was obtained. Infection increased IgG reactivity against recombinant T. cruzi ß-tubulin. A single immunization of mice with recombinant T. cruzi ß-tubulin increased specific IgG reactivity and induced protection against T. cruzi infection. These results indicate that repertoire analysis is a valid approach to identify antigens for vaccines against Chagas disease.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Doença de Chagas/imunologia , Imunoglobulina G/imunologia , Proteínas de Protozoários/imunologia , Trypanosoma cruzi/imunologia , Tubulina (Proteína)/imunologia , Animais , Modelos Animais de Doenças , Imunização , Masculino , Camundongos Endogâmicos BALB C , Camundongos Mutantes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa