Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Exp Bot ; 67(4): 1033-43, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26826219

RESUMO

Root architecture traits are a target for pre-breeders. Incorporation of root architecture traits into new cultivars requires phenotyping. It is attractive to rapidly and directly phenotype root architecture in the field, avoiding laboratory studies that may not translate to the field. A combination of soil coring with a hydraulic push press and manual core-break counting can directly phenotype root architecture traits of depth and distribution in the field through to grain development, but large teams of people are required and labour costs are high with this method. We developed a portable fluorescence imaging system (BlueBox) to automate root counting in soil cores with image analysis software directly in the field. The lighting system was optimized to produce high-contrast images of roots emerging from soil cores. The correlation of the measurements with the root length density of the soil cores exceeded the correlation achieved by human operator measurements (R (2)=0.68 versus 0.57, respectively). A BlueBox-equipped team processed 4.3 cores/hour/person, compared with 3.7 cores/hour/person for the manual method. The portable, automated in-field root architecture phenotyping system was 16% more labour efficient, 19% more accurate, and 12% cheaper than manual conventional coring, and presents an opportunity to directly phenotype root architecture in the field as part of pre-breeding programs. The platform has wide possibilities to capture more information about root health and other root traits in the field.


Assuntos
Botânica/instrumentação , Botânica/métodos , Processamento de Imagem Assistida por Computador/instrumentação , Raízes de Plantas/crescimento & desenvolvimento , Espectrometria de Fluorescência , Triticum/crescimento & desenvolvimento , Botânica/economia , Processamento de Imagem Assistida por Computador/economia , Fenótipo , Raízes de Plantas/genética , Espectrometria de Fluorescência/economia , Espectrometria de Fluorescência/instrumentação , Triticum/genética
2.
Adv Exp Med Biol ; 823: 207-26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25381110

RESUMO

We describe an investigation into how Massey University's Pollen Classifynder can accelerate the understanding of pollen and its role in nature. The Classifynder is an imaging microscopy system that can locate, image and classify slide based pollen samples. Given the laboriousness of purely manual image acquisition and identification it is vital to exploit assistive technologies like the Classifynder to enable acquisition and analysis of pollen samples. It is also vital that we understand the strengths and limitations of automated systems so that they can be used (and improved) to compliment the strengths and weaknesses of human analysts to the greatest extent possible. This article reviews some of our experiences with the Classifynder system and our exploration of alternative classifier models to enhance both accuracy and interpretability. Our experiments in the pollen analysis problem domain have been based on samples from the Australian National University's pollen reference collection (2,890 grains, 15 species) and images bundled with the Classifynder system (400 grains, 4 species). These samples have been represented using the Classifynder image feature set. We additionally work through a real world case study where we assess the ability of the system to determine the pollen make-up of samples of New Zealand honey. In addition to the Classifynder's native neural network classifier, we have evaluated linear discriminant, support vector machine, decision tree and random forest classifiers on these data with encouraging results. Our hope is that our findings will help enhance the performance of future releases of the Classifynder and other systems for accelerating the acquisition and analysis of pollen samples.


Assuntos
Algoritmos , Biologia Computacional/métodos , Processamento de Imagem Assistida por Computador/métodos , Pólen/citologia , Mel/análise , Mel/classificação , Magnoliopsida , Modelos Biológicos , Nova Zelândia , Plantas/classificação , Pólen/classificação , Reprodutibilidade dos Testes , Especificidade da Espécie
3.
Cell Syst ; 9(5): 496-507.e5, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31606369

RESUMO

Although F-actin has a large number of binding partners and regulators, the number of phenotypic states available to the actin cytoskeleton is unknown. Here, we quantified 74 features defining filamentous actin (F-actin) and cellular morphology in >25 million cells after treatment with a library of 114,400 structurally diverse compounds. After reducing the dimensionality of these data, only ∼25 recurrent F-actin phenotypes emerged, each defined by distinct quantitative features that could be machine learned. We identified 2,003 unknown compounds as inducers of actin-related phenotypes, including two that directly bind the focal adhesion protein, talin. Moreover, we observed that compounds with distinct molecular mechanisms could induce equivalent phenotypes and that initially divergent cellular responses could converge over time. These findings suggest a conceptual parallel between the actin cytoskeleton and gene regulatory networks, where the theoretical plasticity of interactions is nearly infinite, yet phenotypes in vivo are constrained into a limited subset of practicable configurations.


Assuntos
Citoesqueleto de Actina/química , Actinas/química , Adaptação Fisiológica/fisiologia , Citoesqueleto de Actina/fisiologia , Actinas/metabolismo , Sequência de Aminoácidos , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Feminino , Ensaios de Triagem em Larga Escala/métodos , Humanos , Ligação Proteica , Talina/metabolismo
4.
Biotechniques ; 61(4): 191-201, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27712582

RESUMO

Microbial colony growth can serve as a useful readout in assays for studying complex genetic interactions or the effects of chemical compounds. Although computational tools for acquiring quantitative measurements of microbial colonies have been developed, their utility can be compromised by inflexible input image requirements, non-trivial installation procedures, or complicated operation. Here, we present the Spotsizer software tool for automated colony size measurements in images of robotically arrayed microbial colonies. Spotsizer features a convenient graphical user interface (GUI), has both single-image and batch-processing capabilities, and works with multiple input image formats and different colony grid types. We demonstrate how Spotsizer can be used for high-throughput quantitative analysis of fission yeast growth. The user-friendly Spotsizer tool provides rapid, accurate, and robust quantitative analyses of microbial growth in a high-throughput format. Spotsizer is freely available at https://data.csiro.au/dap/landingpage?pid=csiro:15330 under a proprietary CSIRO license.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Processamento de Imagem Assistida por Computador/métodos , Schizosaccharomyces/crescimento & desenvolvimento , Software , Algoritmos
5.
Arch Dermatol ; 141(11): 1388-96, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16301386

RESUMO

OBJECTIVE: To describe the diagnostic performance of SolarScan (Polartechnics Ltd, Sydney, Australia), an automated instrument for the diagnosis of primary melanoma. DESIGN: Images from a data set of 2430 lesions (382 were melanomas; median Breslow thickness, 0.36 mm) were divided into a training set and an independent test set at a ratio of approximately 2:1. A diagnostic algorithm (absolute diagnosis of melanoma vs benign lesion and estimated probability of melanoma) was developed and its performance described on the test set. High-quality clinical and dermoscopy images with a detailed patient history for 78 lesions (13 of which were melanomas) from the test set were given to various clinicians to compare their diagnostic accuracy with that of SolarScan. SETTING: Seven specialist referral centers and 2 general practice skin cancer clinics from 3 continents. Comparison between clinician diagnosis and SolarScan diagnosis was by 3 dermoscopy experts, 4 dermatologists, 3 trainee dermatologists, and 3 general practitioners. PATIENTS: Images of the melanocytic lesions were obtained from patients who required either excision or digital monitoring to exclude malignancy. MAIN OUTCOME MEASURES: Sensitivity, specificity, the area under the receiver operator characteristic curve, median probability for the diagnosis of melanoma, a direct comparison of SolarScan with diagnoses performed by humans, and interinstrument and intrainstrument reproducibility. RESULTS: The melanocytic-only diagnostic model was highly reproducible in the test set and gave a sensitivity of 91% (95% confidence interval [CI], 86%-96%) and specificity of 68% (95% CI, 64%-72%) for melanoma. SolarScan had comparable or superior sensitivity and specificity (85% vs 65%) compared with those of experts (90% vs 59%), dermatologists (81% vs 60%), trainees (85% vs 36%; P =.06), and general practitioners (62% vs 63%). The intraclass correlation coefficient of intrainstrument repeatability was 0.86 (95% CI, 0.83-0.88), indicating an excellent repeatability. There was no significant interinstrument variation (P = .80). CONCLUSIONS: SolarScan is a robust diagnostic instrument for pigmented or partially pigmented melanocytic lesions of the skin. Preliminary data suggest that its performance is comparable or superior to that of a range of clinician groups. However, these findings should be confirmed in a formal clinical trial.


Assuntos
Dermoscopia/métodos , Melanoma/diagnóstico , Nevo Pigmentado/diagnóstico , Neoplasias Cutâneas/diagnóstico , Algoritmos , Austrália , Florida , Alemanha , Humanos , Processamento de Imagem Assistida por Computador/métodos , Prontuários Médicos , Melanoma/patologia , Nevo Pigmentado/patologia , Valor Preditivo dos Testes , Curva ROC , Estudos Retrospectivos , Sensibilidade e Especificidade , Neoplasias Cutâneas/patologia
6.
Nat Genet ; 47(3): 235-41, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25665008

RESUMO

Natural variation within species reveals aspects of genome evolution and function. The fission yeast Schizosaccharomyces pombe is an important model for eukaryotic biology, but researchers typically use one standard laboratory strain. To extend the usefulness of this model, we surveyed the genomic and phenotypic variation in 161 natural isolates. We sequenced the genomes of all strains, finding moderate genetic diversity (π = 3 × 10(-3) substitutions/site) and weak global population structure. We estimate that dispersal of S. pombe began during human antiquity (∼340 BCE), and ancestors of these strains reached the Americas at ∼1623 CE. We quantified 74 traits, finding substantial heritable phenotypic diversity. We conducted 223 genome-wide association studies, with 89 traits showing at least one association. The most significant variant for each trait explained 22% of the phenotypic variance on average, with indels having larger effects than SNPs. This analysis represents a rich resource to examine genotype-phenotype relationships in a tractable model.


Assuntos
Genoma Fúngico , Schizosaccharomyces/genética , Variação Genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Genótipo , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único
7.
J Biomol Screen ; 19(3): 354-68, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24019255

RESUMO

The actin cytoskeleton plays an important role in most, if not all, processes necessary for cell survival. Given the fundamental role that the actin cytoskeleton plays in the progression of cancer, it is an ideal target for chemotherapy. Although it is possible to image the actin cytoskeleton in a high-throughput manner, there is currently no validated method to quantify changes in the cytoskeleton in the same capacity, which makes research into its organization and the development of anticytoskeletal drugs difficult. We have validated the use of a linear feature detection algorithm, allowing us to measure changes in actin filament organization. Its ability to quantify changes associated with cytoskeletal disruption will make it a valuable tool in the development of compounds that target the cytoskeleton in cancer. Our results show that this algorithm can quantify cytoskeletal changes in a cell-based system after addition of both well-established and novel anticytoskeletal agents using either fluorescence microscopy or a high-content imaging approach. This novel method gives us the potential to screen compounds in a high-throughput manner for cancer and other diseases in which the cytoskeleton plays a key role.


Assuntos
Citoesqueleto de Actina/metabolismo , Algoritmos , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios de Triagem em Larga Escala , Imagem Molecular/métodos , Actinas/antagonistas & inibidores , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Reprodutibilidade dos Testes , Software
8.
Plant Methods ; 10: 23, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25050131

RESUMO

BACKGROUND: Measuring grain characteristics is an integral component of cereal breeding and research into genetic control of seed development. Measures such as thousand grain weight are fast, but do not give an indication of variation within a sample. Other methods exist for detailed analysis of grain size, but are generally costly and very low throughput. Grain colour analysis is generally difficult to perform with accuracy, and existing methods are expensive and involved. RESULTS: We have developed a software method to measure grain size and colour from images captured with consumer level flatbed scanners, in a robust, standardised way. The accuracy and precision of the method have been demonstrated through screening wheat and Brachypodium distachyon populations for variation in size and colour. CONCLUSION: By using GrainScan, cheap and fast measurement of grain colour and size will enable plant research programs to gain deeper understanding of material, where limited or no information is currently available.

9.
Artigo em Inglês | MEDLINE | ID: mdl-24110438

RESUMO

In studies of germ cell transplantation, measureing tubule diameters and counting cells from different populations using antibodies as markers are very important. Manual measurement of tubule sizes and cell counts is a tedious and sanity grinding work. In this paper, we propose a new boundary weighting based tubule detection method. We first enhance the linear features of the input image and detect the approximate centers of tubules. Next, a boundary weighting transform is applied to the polar transformed image of each tubule region and a circular shortest path is used for the boundary detection. Then, ellipse fitting is carried out for tubule selection and measurement. The algorithm has been tested on a dataset consisting of 20 images, each having about 20 tubules. Experiments show that the detection results of our algorithm are very close to the results obtained manually.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Túbulos Seminíferos/anatomia & histologia , Contagem de Células , Células Germinativas/citologia , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa