Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 46(24): 13471-9, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23163633

RESUMO

The use of single-wall carbon nanotubes (SWNTs) in manufacturing and biomedical applications is increasing at a rapid rate; however data on the effects of a potential environmental release of the materials remain sparse. In this study, soils with either low or high organic matter contents as well as pure cultures of E. coli are challenged with either raw as-produced SWNTs (AP-SWNTs) or SWNTs functionalized with either polyethyleneglycol (PEG-SWNTs) or m-polyaminobenzene sulfonic acid (PABS-SWNTs). To mimic chronic exposure, the soil systems were challenged weekly for six weeks; microbial activities and community structures for both the prokaryote and eukaryote community were evaluated. Results show that repeated applications of AP-SWNTs can affect microbial community structures and induce minor changes in soil metabolic activity in the low organic matter systems. Toxicity of the three types of SWNTs was also assessed in liquid cultures using a bioluminescent E. coli-O157:H7 strain. Although decreases in light were detected in all treated samples, low light recovery following glucose addition in AP-SWNTs treatment and light absorption property of SWNTs particles suggest that AP-SWNTs suppressed metabolic activity of the E. coli, whereas the two functionalized SWNTs are less toxic. The metals released from the raw forms of SWNTs would not play a role in the effects seen in soil or the pure culture. We suggest that sorption to soil organic matter plays a controlling role in the soil microbiological responses to these nanomaterials.


Assuntos
Nanotubos de Carbono/química , Microbiologia do Solo , Biomassa , Dióxido de Carbono/metabolismo , Eletroforese em Gel de Gradiente Desnaturante , Escherichia coli/metabolismo , Medições Luminescentes , Metais/química , Dados de Sequência Molecular , Polietilenoglicóis/química , Solo , Ácidos Sulfônicos/química
2.
J Food Prot ; 73(11): 2001-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21219711

RESUMO

To better protect consumers from exposure to produce contaminated with Escherichia coli, the potential transfer of E. coli from manure or irrigation water to plants must be better understood. We used E. coli strains expressing bioluminescence (E. coli O157:H7 lux) or multiantibiotic resistance (E. coli²(+)) in this study. These marked strains enabled us to visualize in situ rhizosphere colonization and metabolic activity and to track the occurrence and survival of E. coli in soil, rhizosphere, and phyllosphere. When radish and lettuce seeds were treated with E. coli O157:H7 lux and grown in an agar-based growth system, rapid bacterial colonization of the germinating seedlings and high levels of microbial activity were seen. Introduction of E. coli²(+) to soil via manure or via manure in irrigation water showed that E. coli could establish itself in the lettuce rhizosphere. Regardless of introduction method, 15 days subsequent to its establishment in the rhizosphere, E. coli²(+) was detected on the phyllosphere of lettuce at an average number of 2.5 log CFU/g. When E. coli²(+) was introduced 17 and 32 days postseeding to untreated soil (rather than the plant surface) via irrigation, it was detected at low levels (1.4 log CFU/g) on the lettuce phyllosphere 10 days later. While E. coli²(+) persisted in the bulk and rhizosphere soil throughout the study period (day 41), it was not detected on the external portions of the phyllosphere after 27 days. Overall, we find that E. coli is mobile in the plant system and responds to the rhizosphere like other bacteria.


Assuntos
Qualidade de Produtos para o Consumidor , Produtos Agrícolas/microbiologia , Escherichia coli/crescimento & desenvolvimento , Contaminação de Alimentos/análise , Microbiologia do Solo , Contagem de Colônia Microbiana , Escherichia coli O157/crescimento & desenvolvimento , Microbiologia de Alimentos , Humanos , Lactuca/microbiologia , Esterco/microbiologia , Raphanus/microbiologia , Rizosfera
3.
Sci Rep ; 6: 28069, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27306076

RESUMO

Fullerene C60 nanoparticles are being used in broad range of applications. It is important to assess their potential impacts in the environment. We evaluated the effects of C60 introduced as aqueous suspensions of nC60 aggregates of different particle size or via organic solvents on soils with different organic matter contents in this study. Impacts of the application were evaluated by measuring total microbial biomass, metabolic activity and bacterial community structure. Results show that nC60 aggregates, introduced as an aqueous suspension, had size-dependent effects on soil bacterial community composition in the low organic matter system, but induced minimal change in the microbial biomass and metabolic activity in soils with both high and low organic matter contents. Fullerene C60, co-introduced via an organic solvent, did not influence the response of soil microbes to the organic solvents. Our results suggest that nC60 aggregates of smaller size may have negative impact on soil biota and soil organic matter may play a key role in modulating the environmental effect of nanomaterials.


Assuntos
Bactérias/efeitos dos fármacos , Fulerenos/química , Fulerenos/farmacologia , Microbiologia do Solo , Solventes/química , Nanopartículas/química
4.
J Agric Food Chem ; 52(4): 747-54, 2004 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-14969526

RESUMO

N,N'-Dibutylurea (DBU) is a breakdown product of benomyl [methyl 1-(butylcarbamoyl)-2-benzimidazole carbamate], the active ingredient in Benlate fungicides, and has been proposed as one cause for crop damage that growers claim to have occurred from the use of Benlate 50 DF fungicide. This study assessed DBU formation upon (1). application of n-butyl-1-[(14)C]butylisocyanate (BIC), the immediate precursor to DBU formation, in four soils at two water potentials (0.03 and 0.1 MPa) and (2). application of benomyl butyl-1-(14)C-benomyl enriched Benlate DF and SP fungicides to two soils at various combinations of negative water potential (0.03 or 0.1 MPa) and temperature (23 or 33 degrees C). Parent compounds, metabolites, and (14)CO(2) were tracked using chromatographic analysis with radioassay and UV detection, liquid scintillation counting, and postextraction oxidation of the soil. At 0.03 MPa in all four BIC-treated soils, DBU formation was never detected. At 0.1 MPa, DBU was detected in two soils, but at concentrations <3.6 microg kg(-)(1) (0.3 wt % of applied BIC). In both soils treated with benomyl formulations, DBU formation was observed with only Benlate 50 DF application at 0.03 MPa and 23 degrees C, which was followed by rapid dissipation of DBU. The maximum concentration observed was 0.41 microg g(-)(1) (0.65 wt % of applied benomyl at 62.8 microg g(-)(1)), which is well below levels currently reported to cause adverse effects to plants. Combined benomyl and carbendazim half-lives in soils across treatments were 2-3 months. This study demonstrated that further production and accumulation of DBU in soils after Benlate application or from residual benomyl remaining in the soil are highly unlikely and that persistence of any DBU in soils is likely to be short-lived.


Assuntos
Benomilo/química , Fungicidas Industriais/química , Isocianatos/química , Solo/análise , Ureia/química , Cromatografia Líquida de Alta Pressão/métodos , Isocianatos/análise , Poluentes do Solo , Fatores de Tempo , Ureia/análogos & derivados , Ureia/análise
5.
J Agric Food Chem ; 52(24): 7382-8, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15563223

RESUMO

Understanding the dissipation rates of chemicals in unsaturated and saturated zones of subsurface soils will help determine if reductions of concentrations to acceptable levels will occur. Chemical properties and microbial biomass and activity were determined for the surface (0-15 cm), lower root (50-105 cm), and vadose (175-220 cm) zones in a Huntington silty clay loam (Fluventic Hapludoll) collected from an agricultural field near Piketon, OH. The rates of sorption, mineralization, and transformation (formation of bound residues and metabolites) of atrazine were determined. Microbial activity was estimated from the mineralization of (14)C-benzoate. We observed decreased levels of nutrients (total organic carbon, N, and P) and microbial biomass with depth, while activity as measured with benzoate metabolism was higher in the vadose zone than in either the surface or the root zones. Sorption coefficients (K(f)) declined from 8.17 in the surface to 3.31 in the vadose zone. Sorption was positively correlated with organic C content. Rates of atrazine mineralization and bound residues formation were, respectively, 12-2.3-fold lower in the vadose than in the surface soil. Estimated half-lives of atrazine ranged from 77 to 101 days in the surface soil, but increased to over 900 days in the subsurface soils. The decreased dissipation of atrazine with increasing depth in the profile is the result of decreased microbial activity toward atrazine, measured either as total biomass or as populations of atrazine-degrading microorganisms. The combination of reduced dissipation and low sorption indicates that there is potential for atrazine movement in the subsurface soils.


Assuntos
Atrazina/química , Herbicidas/química , Solo/análise , Adsorção , Atrazina/metabolismo , Meia-Vida , Herbicidas/metabolismo , Cinética , Minerais/química , Microbiologia do Solo
6.
J Environ Qual ; 33(5): 1771-8, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15356237

RESUMO

N,N'-dibutylurea (DBU) is a breakdown product of benomyl [methyl 1-(butylcarbamoyl)-2-benzimidazole carbamate], the active ingredient in Benlate fungicides, and has been proposed to cause crop damage after the use of Benlate 50 DF fungicide (DuPont, Wilmington, DE). Our research focused on DBU persistence after application into soil. We assessed DBU persistence on direct application of DBU (carbonyl-(14)C) at two concentrations (0.08 and 0.8 microg DBU kg(-1)) to seven soils and two potting mixes in soil microcosms incubated at various combinations of soil water potential (-0.03 or -0.1 MPa) and temperature (23, 33, 44 degrees C). For two soils at a subset of treatment variables we assessed DBU persistence in the presence of Benlate DF and SP fungicide formulations. Parent compounds, metabolites, and (14)CO(2) were tracked using chromatographic analysis with radioassay and UV detection, liquid scintillation counting, and post-extraction oxidation of the soil. DBU degradation was primarily microbial and for most soil-treatment combinations, half-lives were less than 2 wk. DBU degradation was retarded at the lower soil water potential and enhanced at 33 degrees C. In the presence of the formulation, DBU degradation was slower for one soil type. The longest half-life observed in any case was less than 7 wk; therefore, long-term persistence of DBU applied to soils through a Benlate application is very unlikely.


Assuntos
Poluentes do Solo/metabolismo , Ureia/análogos & derivados , Ureia/metabolismo , Cromatografia , Monitoramento Ambiental , Fungicidas Industriais , Meia-Vida , Microbiologia do Solo
7.
J Agric Food Chem ; 57(11): 4878-82, 2009 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-19489626

RESUMO

An enrichment culture approach was used to isolate a pure culture of the yeast Lipomyces kononenkoae, which had the ability to grow on the herbicide picloram. The yeast rapidly and completely degraded 50 microg mL(-1) picloram by 48 h of growth. While L. kononenkoae was found to use both N atoms of picloram as a sole nitrogen source for growth, it failed to mineralize the herbicide or use it as a sole C source. Product analysis done using LC-ESI-MS indicated that biodegradation of picloram by L. kononenkoae proceeds via a didechlorinated, dihydroxylated, pyridinecarboxylic acid derivative. Our results are consistent with the hypothesis that the majority of picloram degradation in the soil is likely due to microbial catabolic processes.


Assuntos
Herbicidas/metabolismo , Lipomyces/metabolismo , Picloram/metabolismo , Microbiologia do Solo , Biodegradação Ambiental , Herbicidas/química , Cinética , Lipomyces/química , Picloram/química
8.
Environ Sci Technol ; 41(8): 2985-91, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17533868

RESUMO

The nascent state of the nanoproduct industry calls for important early assessment of environmental impacts before significant releases have occurred. Clearly, the impact of manufactured nanomaterials on key soil processes must be addressed so that an unbiased discussion concerning the environmental consequences of nanotechnology can take place. In this study, soils were treated with either 1 microg C60 g(-1) soil in aqueous suspension (nC60) or 1000 microg C60 g(-1) soil in granularform, a control containing equivalent tetrahydrofuran residues as generated during nC60 formation process or water and incubated for up to 180 days. Treatment effects on soil respiration, both basal and glucose-induced, were evaluated. The effects on the soil microbial community size was evaluated using total phospholipid derived phosphate. The impact on community structure was evaluated using both fatty acid profiles and following extraction of total genomic DNA, by DGGE after PCR amplification of total genomic DNA using bacterial variable V3 region targeted primers. In addition, treatment affects on soil enzymatic activities for beta-glucosidase, acid-phosphatase, dehydrogenase, and urease were followed. Our observations show that the introduction of fullerene, as either C60 or nC60, has little impact on the structure and function of the soil microbial community and microbial processes.


Assuntos
Bactérias/efeitos dos fármacos , Fulerenos/farmacologia , Microbiologia do Solo , Biomassa , Consumo de Oxigênio/efeitos dos fármacos
9.
Microb Ecol ; 51(2): 209-19, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16463132

RESUMO

The impact on the microbial community of long-term environmental exposure to metal and organic contamination was investigated. Twenty-four soil samples were collected along a transect dug in soils contaminated with road paint and paint solvents, mainly toluene. Chemical analysis along the transect revealed a range from high to low concentrations of metals (lead and chromium) and organic solvent compounds. Principal components analysis of microbial community structure based on denaturing gradient gel electrophoresis of the V3 region of the 16S rRNA gene and fatty acid methyl esters derived from phospholipids (phospholipid fatty acid analysis) showing samples with similar fingerprints also had similar contaminant concentrations. There was also a weak positive correlation between microbial biomass and the organic carbon concentration. Results indicated that microbial populations are present despite some extreme contaminant levels in this mixed-waste contaminated site. Nucleotide sequence determination of the 16S rRNA gene indicated the presence of phylogenetically diverse bacteria belonging to the alpha-, beta-, gamma-, and delta-Proteobacteria, the high and low G + C Gram-positive bacteria, green nonsulfur, OP8, and others that did not group within a described division. This indicates that soils contaminated with both heavy metals and hydrocarbons for several decades have undergone changes in community composition, but still contain a phylogenetically diverse group of bacteria (including novel phylotypes) that warrant further investigation.


Assuntos
Bactérias/isolamento & purificação , Microbiologia do Solo , Poluentes do Solo , Bactérias/química , Bactérias/classificação , Bactérias/genética , Carbono/análise , Cromo , Ecossistema , Ácidos Graxos/análise , Indiana , Chumbo , Dados de Sequência Molecular , Petróleo , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Solo/análise , Especificidade da Espécie
10.
Environ Sci Technol ; 39(7): 1974-9, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15871226

RESUMO

Understanding indigenous microbial function in contaminated soil is crucial to the successful development and use of bioremediation technologies. We measured the catabolic diversity of indigenous microbial communities in soils with a 30-yr history of Pb, Cr, and hydrocarbon (HC) contamination using a modified substrate-induced respiration method. There were characteristic differences of microbial respirations in the response of highly versus less contaminated soils to the range of organic substrates used. The catabolic response to glucose as compared to succinic acid was approximately 1:5 in less contaminated soils, but 1:25 in highly contaminated soils. In contrast, the response ratio to glucose versus aromatics was about 1:0.4 in less contaminated soils and 1:1 in highly contaminated soils. Principal components analysis (PCA) of the responses confirmed that catabolic diversity differed between highly and less contaminated soils. Univariate analysis also indicated that catabolic diversity was reduced in highly contaminated soils. This catabolic difference was strongly associated with the alteration of microbial community composition. Statistical analyses suggested that the variation in microbial community catabolic diversity was attributed to HCs more than to Pb and Cr.


Assuntos
Bactérias/metabolismo , Poluentes Ambientais/metabolismo , Hidrocarbonetos/análise , Metais Pesados/análise , Microbiologia do Solo , Solo/análise , Dióxido de Carbono/metabolismo , Poluentes Ambientais/análise , Glucose/metabolismo , Indiana , Análise de Componente Principal , Especificidade da Espécie , Ácido Succínico/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa