RESUMO
Cellular senescence is a cell fate triggered in response to stress and is characterized by stable cell-cycle arrest and a hypersecretory state. It has diverse biological roles, ranging from tissue repair to chronic disease. The development of new tools to study senescence in vivo has paved the way for uncovering its physiological and pathological roles and testing senescent cells as a therapeutic target. However, the lack of specific and broadly applicable markers makes it difficult to identify and characterize senescent cells in tissues and living organisms. To address this, we provide practical guidelines called "minimum information for cellular senescence experimentation in vivo" (MICSE). It presents an overview of senescence markers in rodent tissues, transgenic models, non-mammalian systems, human tissues, and tumors and their use in the identification and specification of senescent cells. These guidelines provide a uniform, state-of-the-art, and accessible toolset to improve our understanding of cellular senescence in vivo.
Assuntos
Senescência Celular , Humanos , Animais , Biomarcadores/metabolismo , Guias como Assunto , Neoplasias/patologiaRESUMO
Aging is associated with dysregulated immune functions. Here, we investigated the impact of age on neutrophil diapedesis. Using confocal intravital microscopy, we found that in aged mice, neutrophils adhered to vascular endothelium in inflamed tissues but exhibited a high frequency of reverse transendothelial migration (rTEM). This retrograde breaching of the endothelium by neutrophils was governed by enhanced production of the chemokine CXCL1 from mast cells that localized at endothelial cell (EC) junctions. Increased EC expression of the atypical chemokine receptor 1 (ACKR1) supported this pro-inflammatory milieu in aged venules. Accumulation of CXCL1 caused desensitization of the chemokine receptor CXCR2 on neutrophils and loss of neutrophil directional motility within EC junctions. Fluorescent tracking revealed that in aged mice, neutrophils undergoing rTEM re-entered the circulation and disseminated to the lungs where they caused vascular leakage. Thus, neutrophils stemming from a local inflammatory site contribute to remote organ damage, with implication to the dysregulated systemic inflammation associated with aging.
Assuntos
Envelhecimento/imunologia , Transporte Biológico/imunologia , Inflamação/imunologia , Neutrófilos/imunologia , Animais , Quimiocina CXCL1/imunologia , Células Endoteliais/imunologia , Endotélio Vascular/imunologia , Feminino , Junções Intercelulares/imunologia , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Interleucina-8B/imunologia , Vênulas/imunologiaRESUMO
Cellular senescence is a hallmark of advanced age and a major instigator of numerous inflammatory pathologies. While endothelial cell (EC) senescence is aligned with defective vascular functionality, its impact on fundamental inflammatory responses in vivo at single-cell level remain unclear. To directly investigate the role of EC senescence on dynamics of neutrophil-venular wall interactions, we applied high resolution confocal intravital microscopy to inflamed tissues of an EC-specific progeroid mouse model, characterized by profound indicators of EC senescence. Progerin-expressing ECs supported prolonged neutrophil adhesion and crawling in a cell autonomous manner that additionally mediated neutrophil-dependent microvascular leakage. Transcriptomic and immunofluorescence analysis of inflamed tissues identified elevated levels of EC CXCL1 on progerin-expressing ECs and functional blockade of CXCL1 suppressed the dysregulated neutrophil responses elicited by senescent ECs. Similarly, cultured progerin-expressing human ECs exhibited a senescent phenotype, were pro-inflammatory and prompted increased neutrophil attachment and activation. Collectively, our findings support the concept that senescent ECs drive excessive inflammation and provide new insights into the mode, dynamics, and mechanisms of this response at single-cell level.
Assuntos
Senescência Celular , Quimiocina CXCL1 , Células Endoteliais , Inflamação , Neutrófilos , Neutrófilos/metabolismo , Neutrófilos/imunologia , Animais , Humanos , Camundongos , Inflamação/metabolismo , Inflamação/patologia , Células Endoteliais/metabolismo , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/genética , Adesão CelularRESUMO
Senescence is a widely appreciated tumour suppressive mechanism, which acts as a barrier to cancer development by arresting cell cycle progression in response to harmful stimuli. However, senescent cell accumulation becomes deleterious in aging and contributes to a wide range of age-related pathologies. Furthermore, senescence has beneficial roles and is associated with a growing list of normal physiological processes including wound healing and embryonic development. Therefore, the biological role of senescent cells has become increasingly nuanced and complex. The emergence of sophisticated, next-generation profiling technologies, such as single-cell RNA sequencing, has accelerated our understanding of the heterogeneity of senescence, with distinct final cell states emerging within models as well as between cell types and tissues. In order to explore data sets of increasing size and complexity, the senescence field has begun to employ machine learning (ML) methodologies to probe these intricacies. Most notably, ML has been used to aid the classification of cells as senescent, as well as to characterise the final senescence phenotypes. Here, we provide a background to the principles of ML tasks, as well as some of the most commonly used methodologies from both traditional and deep ML. We focus on the application of these within the context of senescence research, by addressing the utility of ML for the analysis of data from different laboratory technologies (microscopy, transcriptomics, proteomics, methylomics), as well as the potential within senolytic drug discovery. Together, we aim to highlight both the progress and potential for the application of ML within senescence research.
Assuntos
Senescência Celular , Neoplasias , Humanos , Senescência Celular/genética , Envelhecimento/metabolismo , Neoplasias/genética , Fenótipo , Divisão CelularRESUMO
Solid tumours have oxygen gradients and areas of near and almost total anoxia. Hypoxia reduces sensitivity to 5-fluorouracil (5-FU)-chemotherapy for colorectal cancer (CRC). MicroRNAs (miRNAs) are hypoxia sensors and were altered consistently in six CRC cell lines (colon cancer: DLD-1, HCT116 and HT29; rectal cancer: HT55, SW837 and VACO4S) maintained in hypoxia (1 and 0.2% oxygen) compared with normoxia (20.9%). CRC cell lines also showed altered amino acid metabolism in hypoxia and hypoxia-responsive miRNAs were predicted to target genes in four metabolism pathways: beta-alanine; valine, leucine, iso-leucine; aminoacyl-tRNA; and alanine, aspartate, glutamate. MiR-210 was increased in hypoxic areas of CRC tissues and hypoxia-responsive miR-21 and miR-30d, but not miR-210, were significantly increased in 5-FU resistant CRCs. Treatment with miR-21 and miR-30d antagonists sensitized hypoxic CRC cells to 5-FU. Our data highlight the complexity and tumour heterogeneity caused by hypoxia. MiR-210 as a hypoxic biomarker, and the targeting of miR-21 and miR-30d and/or the amino acid metabolism pathways may offer translational opportunities.
Assuntos
Neoplasias Colorretais/genética , MicroRNAs/biossíntese , Aminoácidos/metabolismo , Apoptose/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/administração & dosagem , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Heterogeneidade Genética , Células HCT116 , Humanos , MicroRNAs/genética , Oxigênio/metabolismoRESUMO
In a genome-wide siRNA analysis of p16(INK4a) (p16) modulators, we identify the Hedgehog (Hh) pathway component SUFU and formally demonstrate that Hh signaling promotes mitogenesis by suppression of p16. A fragment of the Hh-responsive GLI2 transcription factor directly binds and inhibits the p16 promoter and senescence is associated with the loss of nuclear GLI2. Hh components partially reside in the primary cilium (PC), and the small fraction of cells in mass culture that elaborate a PC have the lowest expression of p16. Suppression of p16 is effected by both PC-dependent and -independent routes, and ablation of p16 renders cells insensitive to an Hh inhibitor and increases PC formation. These results directly link a well-established developmental mitogenic pathway with a key tumor suppressor and contribute to the molecular understanding of replicative senescence, Hh-mediated oncogenesis, and potentially the role of p16 in aging.
Assuntos
Cílios/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Proteínas Hedgehog/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais , Feminino , Genoma Humano/genética , Humanos , Mapeamento de Interação de Proteínas , RNA Interferente Pequeno/metabolismo , Adulto Jovem , Proteína Gli2 com Dedos de ZincoRESUMO
The miR-29 family is involved in fibrosis in multiple organs, including the intestine where miR-29b facilitates TGF-ß-mediated up-regulation of collagen in mucosal fibroblasts from Crohn's disease (CD) patients. Myeloid cell leukemia-1 (MCL-1), a member of the B-cell CLL/Lymphoma 2 (BCL-2) apoptosis family, is involved in liver fibrosis and is targeted by miR-29b via its 3'-UTR in cultured cell lines. We investigate the role of MCL-1 and miR-29b in primary intestinal fibroblasts and tissue from stricturing CD patients. Transfection of CD intestinal fibroblasts with pre-miR-29b resulted in a significant increase in the mRNA expression of MCL-1 isoforms [MCL-1Long (L)/Extra Short (ES) and MCL-1Short (S)], although MCL-1S was expressed at significantly lower levels. Western blotting predominantly detected the anti-apoptotic MCL-1L isoform, and immunofluorescence showed that staining was localised in discrete nuclear foci. Transfection with pre-miR-29b or anti-miR-29b resulted in a significant increase or decrease, respectively, in MCL-1L foci. CD fibroblasts treated with IL-6 and IL-8, inflammatory cytokines upstream of MCL-1, increased the total mass of MCL-1L-positive foci. Furthermore, transfection of intestinal fibroblasts with pre-miR-29b resulted in an increase in mRNA and protein levels of IL-6 and IL-8. Finally, immunohistochemistry showed reduced MCL-1 protein expression in fibrotic CD samples compared to non-stricturing controls. Together, our findings suggest that induction of MCL-1 by IL-6/IL-8 may surmount any direct down-regulation by miR-29b via its 3'-UTR. We propose that an anti-fibrotic miR-29b/IL-6 IL-8/MCL-1L axis may influence intestinal fibrosis in CD. In the future, therapeutic modulation of this pathway might contribute to the management of fibrosis in CD.
Assuntos
Doença de Crohn/genética , Doença de Crohn/patologia , Interleucina-6/metabolismo , Interleucina-8/metabolismo , MicroRNAs/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Regiões 3' não Traduzidas/genética , Sequência de Bases , Sítios de Ligação , Fibroblastos/metabolismo , Fibrose , Humanos , Interleucina-6/genética , Interleucina-8/genética , Intestinos/patologia , MicroRNAs/genética , Modelos Biológicos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transfecção , Regulação para Cima/genéticaRESUMO
p16 is a key regulator of cellular senescence, yet the drivers of this stable state of proliferative arrest are not well understood. Here, we identify 22 senescence-associated microRNAs (SA-miRNAs) in normal human mammary epithelial cells. We show that SA-miRNAs-26b, 181a, 210 and 424 function in concert to directly repress expression of Polycomb group (PcG) proteins CBX7, embryonic ectoderm development (EED), enhancer of zeste homologue 2 (EZH2) and suppressor of zeste 12 homologue (Suz12), thereby activating p16. We demonstrate the existence of a tight positive feedback loop in which SA-miRNAs activate and re-enforce the expression of other SA-miRNA members. In contrast, PcG members restrain senescence by epigenetically repressing the expression of these SA-miRNAs. Importantly, loss of p16 leads to repression of SA-miRNA expression, intimately coupling this effector of senescence to the SA-miRNA/PcG self-regulatory loop. Taken together, our findings illuminate an important regulatory axis that underpins the transition from proliferation to cellular senescence.
Assuntos
Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Epigênese Genética , MicroRNAs/metabolismo , Células Cultivadas , Retroalimentação Fisiológica , Fibroblastos/citologia , Fibroblastos/metabolismo , Inativação Gênica , Humanos , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Adulto JovemRESUMO
Intestinal fibrosis with stricture formation is a complication of CD (Crohn's disease) that may mandate surgical resection. Accurate biomarkers that reflect the relative contribution of fibrosis to an individual stricture are an unmet need in managing patients with CD. The miRNA-29 (miR-29) family has been implicated in cardiac, hepatic and pulmonary fibrosis. In the present study, we investigated the expression of miR-29a, miR-29b and miR-29c in mucosa overlying a stricture in CD patients (SCD) paired with mucosa from non-strictured areas (NSCD). There was significant down-regulation of the miR-29 family in mucosa overlying SCD compared with mucosa overlying NSCD. miR-29b showed the largest fold-decrease and was selected for functional analysis. Overexpression of miR-29b in CD fibroblasts led to a down-regulation of collagen I and III transcripts and collagen III protein, but did not alter MMP (matrix metalloproteinase)-3, MMP-12 and TIMP (tissue inhibitor of metalloproteinase)-1 production. TGF (transforming growth factor)-ß1 up-regulated collagen I and III transcripts and collagen III protein as a consequence of the down-regulation of miR-29b, and TGF-ß1-induced collagen expression was reversed by exogenous overexpression of miR-29b. Furthermore, serum levels of miR-29 were lower in patients with stricturing disease compared with those without. These findings implicate the miR-29 family in the pathogenesis of intestinal fibrosis in CD and provide impetus for the further evaluation of the miR-29 family as biomarkers.
Assuntos
Colágeno Tipo III/biossíntese , Colágeno Tipo I/biossíntese , Doença de Crohn/patologia , MicroRNAs/biossíntese , Adolescente , Adulto , Idoso , Colágeno Tipo I/genética , Colágeno Tipo III/genética , Constrição Patológica/metabolismo , Doença de Crohn/genética , Regulação para Baixo , Fibrose , Humanos , Mucosa Intestinal/metabolismo , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Fator de Crescimento Transformador beta1/farmacologia , Regulação para CimaRESUMO
Senescence is an anti-tumour mechanism and hallmark of cancer. Loss or mutation of key senescence effectors, such as p16INK4A, are frequently observed in cancer. Intriguingly, some human tumours are both proliferative and senescent-marker positive (Sen-Mark+). Here, we explore this paradox, focusing on the prognostic consequences and the current challenges in classifying these cells. We discuss future strategies for Sen-Mark+ cell detection together with emerging opportunities to exploit senescence for cancer.
RESUMO
Killing senescent cells to improve health-span holds great promise. However, screening for senescence-regulating genes and molecules is challenging because these cells do not proliferate. In this issue, Colville and Liu et al. develop Death-seq, a positive selection screening tool that overcomes this hurdle to offer broad genetic and pharmacological utility.
Assuntos
Apoptose , Senescência Celular , Senescência Celular/genéticaRESUMO
Melanocytes reside within the basal epidermis of human skin, and function to protect the skin from ultraviolet light through the production of melanin. Prolonged exposure of the skin to UV light can induce irreparable DNA damage and drive cells into senescence, a sustained cell cycle arrest that prevents the propagation of this damage. Senescent cells can also be detrimental and contribute to skin ageing phenotypes through their senescence-associated secretory phenotype. Senescent cells can act in both an autocrine and paracrine manner to produce widespread tissue inflammation and skin ageing. Recently, melanocytes have been identified as the main senescent cell population within the epidermis and have been linked to a variety of skin ageing phenotypes, such as epidermal thinning and the presence of wrinkles. However, the literature surrounding melanocyte senescence is limited and tends to focus on the role of senescence in the prevention of melanoma. Therefore, this review aims to explore the current understanding of the contribution of senescent melanocytes to human skin ageing.
RESUMO
Senescence occurs in response to a number of damaging stimuli to limit oncogenic transformation and cancer development. As no single, universal senescence marker has been discovered, the confident classification of senescence induction requires the parallel assessment of a series of hallmarks. Therefore, there is a growing need for "first-pass" tools of senescence identification to streamline experimental workflows and complement conventional markers. Here, we utilise a high content, multidimensional phenotypic profiling-based approach, to assess the morphological profiles of senescent cells induced via a range of stimuli. In the context of senescence, we refer to these as senescence-associated morphological profiles (SAMPs), as they facilitate distinction between senescent and proliferating cells. The complexity of the profiles generated also allows exploration of the heterogeneity both between models of senescence and within an individual senescence model, providing a level of insight at the single cell level. Furthermore, we also demonstrate that these models are applicable to the assessment of senescence in vivo, which remains a key challenge for the field. Therefore, we believe SAMPs has the potential to serve as a useful addition in the repertoire of senescence researchers, either as a first-pass tool or as part of the established senescence hallmarks.
Assuntos
Senescência Celular , Neoplasias , Biomarcadores , Carcinogênese , Humanos , Neoplasias/genética , OncogenesRESUMO
BACKGROUND: Upon cellular entry retroviruses must avoid innate restriction factors produced by the host cell. For human immunodeficiency virus (HIV) human restriction factors, APOBEC3 (apolipoprotein-B-mRNA-editing-enzyme), p21 and tetherin are well characterised. RESULTS: To identify intrinsic resistance factors to HIV-1 replication we screened 19,121 human genes and identified 114 factors with significant inhibition of infection. Those with a known function are involved in a broad spectrum of cellular processes including receptor signalling, vesicle trafficking, transcription, apoptosis, cross-nuclear membrane transport, meiosis, DNA damage repair, ubiquitination and RNA processing. We focused on the PAF1 complex which has been previously implicated in gene transcription, cell cycle control and mRNA surveillance. Knockdown of all members of the PAF1 family of proteins enhanced HIV-1 reverse transcription and integration of provirus. Over-expression of PAF1 in host cells renders them refractory to HIV-1. Simian Immunodeficiency Viruses and HIV-2 are also restricted in PAF1 expressing cells. PAF1 is expressed in primary monocytes, macrophages and T-lymphocytes and we demonstrate strong activity in MonoMac1, a monocyte cell line. CONCLUSIONS: We propose that the PAF1c establishes an anti-viral state to prevent infection by incoming retroviruses. This previously unrecognised mechanism of restriction could have implications for invasion of cells by any pathogen.
Assuntos
Genoma Humano , Infecções por HIV/genética , HIV/fisiologia , Proteínas/genética , Replicação Viral , Linhagem Celular , HIV/genética , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Interações Hospedeiro-Patógeno , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Fatores de TranscriçãoRESUMO
A hallmark of senescence is the acquisition of an enhanced secretome comprising inflammatory mediators and tissue remodelling agents - the senescence-associated secretory phenotype (SASP). Through the SASP, senescent cells are hypothesised to contribute to both ageing and pathologies associated with age. Whilst soluble factors have been the most widely investigated components of the SASP, there is growing evidence that small extracellular vesicles (EVs) comprise functionally important constituents. Thus, dissecting the contribution of the soluble SASP from the vesicular component is crucial to elucidating the functional significance of senescent cell derived EVs. Here, we take advantage of a systematic proteomics based approach to determine that soluble SASP factors co-isolate with EVs following differential ultracentrifugation (dUC). We present size-exclusion chromatography (SEC) as a method for separation of the soluble and vesicular components of the senescent secretome and thus EV purification. Furthermore, we demonstrate that SEC EVs isolated from senescent cells contribute to non-cell autonomous paracrine senescence. Therefore, this work emphasises the requirement for methodological rigor due to the propensity of SASP components to co-isolate during dUC and provides a framework for future investigations of the vesicular component of the SASP.
Assuntos
Envelhecimento/metabolismo , Senescência Celular , Vesículas Extracelulares/metabolismo , Secretoma/metabolismo , Fenótipo Secretor Associado à Senescência , Linhagem Celular Tumoral , Células Cultivadas , Cromatografia em Gel , Exossomos/química , Exossomos/metabolismo , Vesículas Extracelulares/química , Humanos , Fenótipo , Proteínas/análise , Proteômica/métodosRESUMO
Human colonic neuromuscular functions decline among the elderly. The aim was to explore the involvement of senescence. A preliminary PCR study looked for age-dependent differences in expression of CDKN1A (encoding the senescence-related p21 protein) and CDKN2A (encoding p16 and p14) in human ascending and descending colon (without mucosa) from 39 (approximately 50: 50 male: female) adult (aged 27-60 years) and elderly donors (70-89 years). Other genes from different aging pathways (e.g., inflammation, oxidative stress, autophagy) and cell-types (e.g., neurons, neuron axonal transport) were also examined. Unlike CDKN1A, CDKN2A (using primers for p16 and p14 but not when using p14-specific primers) was upregulated in both regions of colon. Compared with the number of genes appearing to upregulate in association with temporal age, more genes positively associated with increased CDKN2A expression (respectively, 16 and five of 44 genes studied for ascending and descending colon). Confirmation of increased expression of CDKN2A was sought by immunostaining for p16 in the myenteric plexus of colon from 52 patients, using a semi-automated software protocol. The results showed increased staining not within the glial cells (S100 stained), but in the cytoplasm of myenteric nerve cell bodies (MAP2 stained, with identified nucleus) of ascending, but not descending colon of the elderly, and not in the cell nucleus of either region or age group (5,710 neurons analyzed: n = 12-14 for each group). It was concluded that increased p16 staining within the cytoplasm of myenteric nerve cell bodies of elderly ascending (but not descending) colon, suggests a region-dependent, post-mitotic cellular senescence-like activity, perhaps involved with aging of enteric neurons within the colon.
RESUMO
Senescence, a state of stable growth arrest, plays an important role in ageing and age-related diseases in vivo. Although the INK4/ARF locus is known to be essential for senescence programmes, the key regulators driving p16 and ARF transcription remain largely underexplored. Using siRNA screening for modulators of the p16/pRB and ARF/p53/p21 pathways in deeply senescent human mammary epithelial cells (DS HMECs) and fibroblasts (DS HMFs), we identified EGR2 as a novel regulator of senescence. EGR2 expression is up-regulated during senescence, and its ablation by siRNA in DS HMECs and HMFs transiently reverses the senescent phenotype. We demonstrate that EGR2 activates the ARF and p16 promoters and directly binds to both the ARF and p16 promoters. Loss of EGR2 down-regulates p16 levels and increases the pool of p16- p21- 'reversed' cells in the population. Moreover, EGR2 overexpression is sufficient to induce senescence. Our data suggest that EGR2 is a direct transcriptional activator of the p16/pRB and ARF/p53/p21 pathways in senescence and a novel marker of senescence.
Assuntos
Senescência Celular , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Adolescente , Adulto , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Glândulas Mamárias Humanas/citologia , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Proteína do Retinoblastoma/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima , Adulto JovemRESUMO
Senescence is a state of proliferative arrest which has been described as a protective mechanism against the malignant transformation of cells. However, senescent cells have also been demonstrated to accumulate with age and to contribute to a variety of age-related pathologies. These pathological effects have been attributed to the acquisition of an enhanced secretory profile geared towards inflammatory molecules and tissue remodelling agents - known as the senescence-associated secretory phenotype (SASP). Whilst the SASP has long been considered to be comprised predominantly of soluble mediators, growing evidence has recently emerged for the role of extracellular vesicles (EVs) as key players within the secretome of senescent cells. This review is intended to consolidate recent evidence for the roles of senescent cell-derived EVs to both the beneficial (Bright) and detrimental (Dark) effects of the SASP.
Assuntos
Envelhecimento/metabolismo , Senescência Celular , Vesículas Extracelulares/metabolismo , HumanosRESUMO
The recent advent of 'organs in a dish' has revolutionised the research landscape. These 3D culture systems have paved the way for translational, post genomics research by enabling scientists to model diseases in the laboratory, grow patient-derived organoids, and unite this technology with other cutting-edge methodologies such as drug discovery. Fields such as dermatology and neuroscience have revolutionised the development of robust 3D models, which faithfully recapitulate native physiology in vivo to provide important functional and mechanistic insights. These models have underpinned a rapid growth in the number of organs and myriad of human diseases that can be modelled in 3D, which currently includes breast, cerebral cortex, heart, intestine, kidney, liver, lung, neural tube, pancreas, prostate, skin and stomach, as well as patient derived tumours. However, so far, they have not yet been employed extensively in the study of fundamental cellular programmes such as senescence. Thus, tissue engineering and 3D culture offer an exciting opportunity to further understand the bright and dark sides of senescence in a more complex and physiologically relevant environment. Below, we will discuss previous approaches to investigating senescence and ageing using organotypic models, and some potential opportunities for future research.
Assuntos
Senescência Celular/fisiologia , Modelos Biológicos , Organoides , Engenharia Tecidual/métodos , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Tecnologia Biomédica/métodos , Tecnologia Biomédica/tendências , Humanos , Técnicas de Cultura de Órgãos/métodos , Organoides/fisiologia , Organoides/fisiopatologiaRESUMO
BACKGROUND: Cellular senescence, a permanent state of replicative arrest in otherwise proliferating cells, is a hallmark of aging and has been linked to aging-related diseases. Many genes play a role in cellular senescence, yet a comprehensive understanding of its pathways is still lacking. RESULTS: We develop CellAge (http://genomics.senescence.info/cells), a manually curated database of 279 human genes driving cellular senescence, and perform various integrative analyses. Genes inducing cellular senescence tend to be overexpressed with age in human tissues and are significantly overrepresented in anti-longevity and tumor-suppressor genes, while genes inhibiting cellular senescence overlap with pro-longevity and oncogenes. Furthermore, cellular senescence genes are strongly conserved in mammals but not in invertebrates. We also build cellular senescence protein-protein interaction and co-expression networks. Clusters in the networks are enriched for cell cycle and immunological processes. Network topological parameters also reveal novel potential cellular senescence regulators. Using siRNAs, we observe that all 26 candidates tested induce at least one marker of senescence with 13 genes (C9orf40, CDC25A, CDCA4, CKAP2, GTF3C4, HAUS4, IMMT, MCM7, MTHFD2, MYBL2, NEK2, NIPA2, and TCEB3) decreasing cell number, activating p16/p21, and undergoing morphological changes that resemble cellular senescence. CONCLUSIONS: Overall, our work provides a benchmark resource for researchers to study cellular senescence, and our systems biology analyses reveal new insights and gene regulators of cellular senescence.