RESUMO
Styela clava, an ascidian native to the northwest Pacific, was first recorded in the Atlantic at Plymouth, southwest England, in 1953. It now ranges in the northeast Atlantic from Portugal to northern Denmark, and has colonized the east coast of North America. Within the region of first introduction, we aimed to characterize current genetic diversity in the species, elucidate the respective roles of human-aided vs. natural dispersal, and assess the extent of larval dispersal by looking for genetic differentiation at very small scales. Eight sites, mostly marinas, were studied along c. 200 km of coast in southwest England encompassing Plymouth. Five microsatellite loci were genotyped in 303 individuals to analyse gene flow at regional (among sites) and fine (within sites) scales. F-statistics and assignment tests were used to investigate regional genetic structure. At the fine scale, deviation from mutation-drift equilibrium was tested, and isolation by distance and genetic clustering analyses were undertaken. Significant genetic differentiation existed between sites, unrelated to geographical separation; migration between geographically distant marinas was inferred, highlighting the likely importance of human-mediated dispersal in range expansion and occupancy by S. clava. Fine-scale population structure was present within at least four sites, which may be explained by the limited dispersal ability of this ascidian and recruitment from differentiated pools of larvae. Populations in enclosed marinas had higher self-recruitment rates than those in open sites. Some marinas might therefore function as reservoirs of propagules for subsequent spread, whereas others might be sinks for migrants.
Assuntos
Fluxo Gênico , Urocordados/classificação , Urocordados/genética , Animais , Ecossistema , Inglaterra , Variação Genética , Genótipo , Humanos , Larva/fisiologia , Biologia Marinha , Repetições de Microssatélites , Dinâmica Populacional , Urocordados/crescimento & desenvolvimento , Urocordados/fisiologiaRESUMO
The Order Stolidobranchiata comprises the families Pyuridae, Styelidae and Molgulidae. Early molecular data was consistent with monophyly of the Stolidobranchiata and also the Molgulidae. Internal phylogeny and relationships between Styelidae and Pyuridae were inconclusive however. In order to clarify these points we used mitochondrial and nuclear sequences from 31 species of Styelidae and 25 of Pyuridae. Phylogenetic trees recovered the Pyuridae as a monophyletic clade, and their genera appeared as monophyletic with the exception of Pyura. The Styelidae, on the other hand, appeared as a paraphyletic group split into several clades. One of them was formed by solitary oviparous species, of which the Pyuridae were a sister group. A second clade included the colonial genera Botryllus, Botrylloides and Symplegma. The remaining colonial and solitary genera formed several poorly resolved clades. One of the more species genus, Polycarpa, was shown to be polyphyletic, and the species Styela plicata grouped into two genetically distant clades suggesting the existence of two cryptic species. The internal phylogeny of Styelidae has bearings on the origin of coloniality in this family. We suggest to abandon the traditional division of colonial forms into social and compound species and use instead the categories of aggregated colonies that do not have common vascular systems, and integrated colonies, that do possess such systems. Our molecular results indicate that there have been several independent acquisitions of coloniality in the Styelidae, and that viviparity may be a pre-adaptation for a colonial life-style.
Assuntos
Evolução Molecular , Filogenia , Urocordados/genética , Animais , Teorema de Bayes , Núcleo Celular/genética , DNA Mitocondrial/genética , DNA Ribossômico/genética , Especiação Genética , Funções Verossimilhança , Mitocôndrias/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Urocordados/classificaçãoRESUMO
The bryozoan Schizoporella japonica Ortmann (1890) was first recorded in European waters in 2010 and has since been reported from further locations in Great Britain (GB) and Norway. This paper provides a new earliest European record for the species from 2009, a first record from Ireland and presence and absence records from a total of 231 marinas and harbours across GB, Ireland, the Isle of Man, France and Portugal. This species is typically associated with human activity, including commercial and recreational vessels, aquaculture equipment, and both wave and tidal energy devices. It has also been observed in the natural environment, fouling rocks and boulders. The species has an extensive but widely discontinuous distribution in GB and Ireland. Although found frequently in marinas and harbours in Scotland, it inhabits only a few sites in England, Wales and Ireland, interspersed with wide gaps that are well documented as genuine absences. This appears to be a rare example of a southward-spreading invasion in GB and Ireland. The species has been reported from the Isle of Man and Norway but has not been found in France or Portugal. In the future we expect S. japonica to spread into suitable sections of the English, Welsh and Irish coasts, and further within Europe. The species' capability for long-distance saltatory spread and potential for negative impact on native ecosystems and economic activity suggests that S. japonica should now be considered invasive in GB and Ireland. As such, it is recommended that biosecurity procedures alongside effective surveillance and monitoring should be prioritised for regions outside the species' current distribution.
RESUMO
Boat harbours are an increasingly common form of artificial habitat. This paper presents a comparative study of contaminants and foulers of a habitat-forming native kelp (Saccharina latissima) in four marinas and four reference locations along the south-west coast of the UK. Fouling of algal laminae was light (<2% cover) in reference locations, while epibiota cover ranged from 25% to 80% of laminae in marinas. Metals associated with antifouling paints were up to six times more concentrated in algal tissues from marinas than from the reference locations. Marinas also carried the greatest cover and diversity of non-indigenous epibiota on the kelp laminae. This indicates not only a potential stress to kelps in these environments, but also the possibility that detached laminae will act as vectors for the dispersal of non-indigenous species. The development of boat harbours creates habitats that are high risk source localities for pollution-tolerant fouling organisms.
Assuntos
Ecossistema , Kelp/metabolismo , Navios , Poluentes Químicos da Água/metabolismo , Biodiversidade , Biota , Desinfetantes/metabolismo , Monitoramento Ambiental , Metais/metabolismo , Poluentes Químicos da Água/análiseRESUMO
Marine invertebrates belonging to a broad range of taxa disperse aquatic spermatozoa to fertilize eggs that are retained rather than spawned. We outline the occurrence of this mechanism, which we refer to as spermcast mating, and identify tentative generalizations relating to it. Contrasts are drawn where appropriate with broadcast spawning of both eggs and sperm for external fertilization, and with copulation or pseudocopulation. Spermcast mating may involve the gradual accumulation of long-lived spermatozoa from dilute suspension, probably during suspension feeding, and the subsequent storage of spermatozoa by the recipient (acting female) prior to fertilization. This process may involve extensive contact between spermatozoa and recipient (maternal) tissue. Mating may be influenced by compatibility systems, and receipt of compatible allosperm may trigger female investment, giving apparent scope for sexual conflict over levels of maternal investment. External fertilization of cohesive egg masses remaining close to the acting female may appear somewhat intermediate between spermcast mating and broadcast spawning but, while it may be possible to envisage a continuum between the 2 modes, the end points are distinct, commonplace, and involve contrasting reproductive characteristics. Three variants of the typical pattern of spermcast mating are briefly discussed: the spawning of zygotes (rather than the more usual brooding of progeny), polyembryony, and the dispersal of spermatophores rather than individual spermatozoa.
RESUMO
Sex-allocation theory developed for hermaphroditic plants predicts that impaired phenotype or reduced parental survivorship caused by environmental stress should induce relatively greater allocation to the male function. We provide experimental evidence of stress-induced maleness, already well documented in flowering plants, in a modular animal. By using cloned copies of replicate genotypes, we show that the marine bryozoan Celleporella hyalina increases the ratio of male to female modules in response to diverse environmental stressors. Mating trials confirmed that paternity is determined by fair-raffle sperm competition, which should obviate local mate competition at characteristic population density and promote the advantage of increased male allocation. The demonstrated similarity to plants transcends specific physiological pathways and suggests that stress-induced bias toward male function is a general response of hermaphroditic modular organisms to impaired prospects for parental productivity or survival.
Assuntos
Briozoários/fisiologia , Transtornos do Desenvolvimento Sexual/fisiopatologia , Comportamento Sexual Animal , Estresse Fisiológico/fisiopatologia , Animais , Comportamento Competitivo , Feminino , Masculino , Razão de MasculinidadeRESUMO
Negative frequency-dependent mating success--the rare male effect--is a potentially powerful evolutionary force, but disagreement exists as to whether previous work, focusing on copulating species, has robustly demonstrated this phenomenon. Noncopulating sessile organisms that release male gametes into the environment but retain their eggs for fertilization may routinely receive unequal mixtures of sperm. Although promiscuity seems unavoidable it does not follow that the resulting paternity obeys 'fair raffle' expectations. This study investigates frequency dependence in the mating of one such species, the colonial ascidian Diplosoma listerianum. In competition with an alternative sperm source males fathered more progeny if previously mated to a particular female than if no mating history existed. This suggests positive frequency-dependent selection, but may simply result from a mate order effect involving sperm storage. With fewer acclimation matings, separated by longer intervals, this pattern was not found. When, in a different experimental design, virgin females were given simultaneous mixtures of gametes at widely divergent concentrations, sperm at the lower frequency consistently achieved a greater than expected share of paternity--a rare male effect. A convincing argument as to why D. listerianum should favour rare sperm has not been identified, as sperm rarity is expected to correlate very poorly with ecological or genetic male characteristics in this pattern of mating. The existence of nongenetic female preferences at the level of colony modules, analogous in effect to fixed female preferences, is proposed. If visible to selection, indirect benefits from increasing the genetic diversity of a sibship appear the only likely explanation of the rare male effect in this system as the life history presents virtually no costs to multiple mating, and a near absence of direct (resource) benefits, whereas less controversial hypotheses of female promiscuity (e.g. trade up, genetic incompatibility) do not seem appropriate.
Assuntos
Evolução Biológica , Seleção Genética , Comportamento Sexual Animal , Espermatozoides/fisiologia , Urocordados/fisiologia , Animais , Feminino , Fertilidade/fisiologia , Fertilização/fisiologia , MasculinoRESUMO
The importance of sexual compatibility between mates has only recently been realized in zoological research into sexual selection, yet its study has been central to botanical research for many decades. The reproductive characteristics of remote mating, an absence of precopulatory mate screening, internal fertilization and embryonic brooding are shared between passively pollinated plants and a phylogenetically diverse group of sessile aquatic invertebrates. Here, we further characterize the sexual compatibility system of one such invertebrate, the colonial ascidian Diplosoma listerianum. All 66 reciprocal pairings of 12 genetic individuals were carried out. Fecundities of crosses varied widely and suggested a continuous scale of sexual compatibility. Of the 11 animals from the same population c. 40% of crosses were completely incompatible with a further c. 20% having obvious partial compatibility (reduced fecundity). We are unaware of other studies documenting such high levels of sexual incompatibility in unrelated individuals. RAPD fingerprinting was used to estimate relatedness among the 12 individuals after a known pedigree was successfully reconstructed to validate the technique. In contrast to previous results, no correlation between genetic similarity and sexual compatibility was detected. The blocking of many genotypes of sperm is expected to severely modify realized paternity away from 'fair raffle' expectations and probably reduce levels of intra-brood genetic diversity in this obligatorily promiscuous mating system. One adaptive benefit may be to reduce the bombardment of the female reproductive system by outcrossed sperm with conflicting evolutionary interests, so as to maintain female control of somatic : gametic investment.
Assuntos
Variação Genética , Comportamento Sexual Animal/fisiologia , Urocordados/genética , Urocordados/fisiologia , Animais , Cruzamentos Genéticos , Transtornos do Desenvolvimento Sexual , Feminino , Fertilidade/fisiologia , Fertilização/fisiologia , Masculino , Oócitos/fisiologia , Técnica de Amplificação ao Acaso de DNA Polimórfico , Espermatozoides/fisiologiaRESUMO
The life cycles of sexually reproducing animals and flowering plants begin with male and female gametes and their fusion to form a zygote. Selection at this earliest stage is crucial for offspring quality and raises similar evolutionary issues, yet zoology and botany use dissimilar approaches. There are striking parallels in the role of prezygotic competition for sexual selection on males, cryptic female choice, sexual conflict, and against selfish genetic elements and genetic incompatibility. In both groups, understanding the evolution of sex-specific and reproductive traits will require an appreciation of the effects of prezygotic competition on fitness.