Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Europace ; 25(2): 716-725, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36197749

RESUMO

AIMS: Anti-tachycardia pacing (ATP) is a reliable electrotherapy to painlessly terminate ventricular tachycardia (VT). However, ATP is often ineffective, particularly for fast VTs. The efficacy may be enhanced by optimized delivery closer to the re-entrant circuit driving the VT. This study aims to compare ATP efficacy for different delivery locations with respect to the re-entrant circuit, and further optimize ATP by minimizing failure through re-initiation. METHODS AND RESULTS: Seventy-three sustained VTs were induced in a cohort of seven infarcted porcine ventricular computational models, largely dominated by a single re-entrant pathway. The efficacy of burst ATP delivered from three locations proximal to the re-entrant circuit (septum) and three distal locations (lateral/posterior left ventricle) was compared. Re-initiation episodes were used to develop an algorithm utilizing correlations between successive sensed electrogram morphologies to automatically truncate ATP pulse delivery. Anti-tachycardia pacing was more efficacious at terminating slow compared with fast VTs (65 vs. 46%, P = 0.000039). A separate analysis of slow VTs showed that the efficacy was significantly higher when delivered from distal compared with proximal locations (distal 72%, proximal 59%), being reversed for fast VTs (distal 41%, proximal 51%). Application of our early termination detection algorithm (ETDA) accurately detected VT termination in 79% of re-initiated cases, improving the overall efficacy for proximal delivery with delivery inside the critical isthmus (CI) itself being overall most effective. CONCLUSION: Anti-tachycardia pacing delivery proximal to the re-entrant circuit is more effective at terminating fast VTs, but less so slow VTs, due to frequent re-initiation. Attenuating re-initiation, through ETDA, increases the efficacy of delivery within the CI for all VTs.


Assuntos
Desfibriladores Implantáveis , Taquicardia Ventricular , Suínos , Animais , Cicatriz/etiologia , Cicatriz/terapia , Estimulação Cardíaca Artificial/métodos , Taquicardia Ventricular/terapia , Ventrículos do Coração , Trifosfato de Adenosina
2.
Europace ; 25(6)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37314196

RESUMO

AIMS: The standard implantable cardioverter defibrillator (ICD) generator (can) is placed in the left pectoral area; however, in certain circumstances, right-sided cans may be required which may increase defibrillation threshold (DFT) due to suboptimal shock vectors. We aim to quantitatively assess whether the potential increase in DFT of right-sided can configurations may be mitigated by alternate positioning of the right ventricular (RV) shocking coil or adding coils in the superior vena cava (SVC) and coronary sinus (CS). METHODS AND RESULTS: A cohort of CT-derived torso models was used to assess DFT of ICD configurations with right-sided cans and alternate positioning of RV shock coils. Efficacy changes with additional coils in the SVC and CS were evaluated. A right-sided can with an apical RV shock coil significantly increased DFT compared to a left-sided can [19.5 (16.4, 27.1) J vs. 13.3 (11.7, 19.9) J, P < 0.001]. Septal positioning of the RV coil led to a further DFT increase when using a right-sided can [26.7 (18.1, 36.1) J vs. 19.5 (16.4, 27.1) J, P < 0.001], but not a left-sided can [12.1 (8.1, 17.6) J vs. 13.3 (11.7, 19.9) J, P = 0.099). Defibrillation threshold of a right-sided can with apical or septal coil was reduced the most by adding both SVC and CS coils [19.5 (16.4, 27.1) J vs. 6.6 (3.9, 9.9) J, P < 0.001, and 26.7 (18.1, 36.1) J vs. 12.1 (5.7, 13.5) J, P < 0.001]. CONCLUSION: Right-sided, compared to left-sided, can positioning results in a 50% increase in DFT. For right-sided cans, apical shock coil positioning produces a lower DFT than septal positions. Elevated right-sided can DFTs may be mitigated by utilizing additional coils in SVC and CS.


Assuntos
Seio Coronário , Desfibriladores Implantáveis , Humanos , Veia Cava Superior/diagnóstico por imagem , Simulação por Computador , Ventrículos do Coração
3.
Europace ; 25(2): 469-477, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36369980

RESUMO

AIMS: Existing strategies that identify post-infarct ventricular tachycardia (VT) ablation target either employ invasive electrophysiological (EP) mapping or non-invasive modalities utilizing the electrocardiogram (ECG). Their success relies on localizing sites critical to the maintenance of the clinical arrhythmia, not always recorded on the 12-lead ECG. Targeting the clinical VT by utilizing electrograms (EGM) recordings stored in implanted devices may aid ablation planning, enhancing safety and speed and potentially reducing the need of VT induction. In this context, we aim to develop a non-invasive computational-deep learning (DL) platform to localize VT exit sites from surface ECGs and implanted device intracardiac EGMs. METHODS AND RESULTS: A library of ECGs and EGMs from simulated paced beats and representative post-infarct VTs was generated across five torso models. Traces were used to train DL algorithms to localize VT sites of earliest systolic activation; first tested on simulated data and then on a clinically induced VT to show applicability of our platform in clinical settings. Localization performance was estimated via localization errors (LEs) against known VT exit sites from simulations or clinical ablation targets. Surface ECGs successfully localized post-infarct VTs from simulated data with mean LE = 9.61 ± 2.61 mm across torsos. VT localization was successfully achieved from implanted device intracardiac EGMs with mean LE = 13.10 ± 2.36 mm. Finally, the clinically induced VT localization was in agreement with the clinical ablation volume. CONCLUSION: The proposed framework may be utilized for direct localization of post-infarct VTs from surface ECGs and/or implanted device EGMs, or in conjunction with efficient, patient-specific modelling, enhancing safety and speed of ablation planning.


Assuntos
Ablação por Cateter , Aprendizado Profundo , Taquicardia Ventricular , Humanos , Técnicas Eletrofisiológicas Cardíacas , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/cirurgia , Eletrocardiografia/métodos , Infarto/cirurgia
4.
Europace ; 25(9)2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37421339

RESUMO

AIMS: Substrate assessment of scar-mediated ventricular tachycardia (VT) is frequently performed using late gadolinium enhancement (LGE) images. Although this provides structural information about critical pathways through the scar, assessing the vulnerability of these pathways for sustaining VT is not possible with imaging alone.This study evaluated the performance of a novel automated re-entrant pathway finding algorithm to non-invasively predict VT circuit and inducibility. METHODS: Twenty post-infarct VT-ablation patients were included for retrospective analysis. Commercially available software (ADAS3D left ventricular) was used to generate scar maps from 2D-LGE images using the default 40-60 pixel-signal-intensity (PSI) threshold. In addition, algorithm sensitivity for altered thresholds was explored using PSI 45-55, 35-65, and 30-70. Simulations were performed on the Virtual Induction and Treatment of Arrhythmias (VITA) framework to identify potential sites of block and assess their vulnerability depending on the automatically computed round-trip-time (RTT). Metrics, indicative of substrate complexity, were correlated with VT-recurrence during follow-up. RESULTS: Total VTs (85 ± 43 vs. 42 ± 27) and unique VTs (9 ± 4 vs. 5 ± 4) were significantly higher in patients with- compared to patients without recurrence, and were predictive of recurrence with area under the curve of 0.820 and 0.770, respectively. VITA was robust to scar threshold variations with no significant impact on total and unique VTs, and mean RTT between the four models. Simulation metrics derived from PSI 45-55 model had the highest number of parameters predictive for post-ablation VT-recurrence. CONCLUSION: Advanced computational metrics can non-invasively and robustly assess VT substrate complexity, which may aid personalized clinical planning and decision-making in the treatment of post-infarction VT.


Assuntos
Cicatriz , Simulação por Computador , Taquicardia Ventricular , Humanos , Algoritmos , Ablação por Cateter , Cicatriz/complicações , Infarto do Miocárdio/complicações , Estudos Retrospectivos , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/cirurgia , Reprodutibilidade dos Testes , Masculino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais
5.
Europace ; 24(7): 1137-1147, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34907426

RESUMO

AIMS: Remodelling of the left ventricular (LV) shape is one of the hallmarks of non-ischaemic dilated cardiomyopathy (DCM) and may contribute to ventricular arrhythmias and sudden cardiac death. We sought to investigate a novel three dimensional (3D) shape analysis approach to quantify LV remodelling for arrhythmia prediction in DCM. METHODS AND RESULTS: We created 3D LV shape models from end-diastolic cardiac magnetic resonance images of 156 patients with DCM and late gadolinium enhancement (LGE). Using the shape models, principle component analysis, and Cox-Lasso regression, we derived a prognostic LV arrhythmic shape (LVAS) score which identified patients who reached a composite arrhythmic endpoint of sudden cardiac death, aborted sudden cardiac death, and sustained ventricular tachycardia. We also extracted geometrical metrics to look for potential prognostic markers. During a follow-up period of up to 16 years (median 7.7, interquartile range: 3.9), 25 patients met the arrhythmic endpoint. The optimally prognostic LV shape for predicting the time-to arrhythmic event was a paraboloidal longitudinal profile, with a relatively wide base. The corresponding LVAS was associated with arrhythmic events in univariate Cox regression (hazard ratio = 2.0 per quartile; 95% confidence interval: 1.3-2.9), in univariate Cox regression with propensity score adjustment, and in three multivariate models; with LV ejection fraction, New York Heart Association Class III/IV (Model 1), implantable cardioverter-defibrillator receipt (Model 2), and cardiac resynchronization therapy (Model 3). CONCLUSION: Biomarkers of LV shape remodelling in DCM can help to identify the patients at greatest risk of lethal ventricular arrhythmias.


Assuntos
Cardiomiopatia Dilatada , Arritmias Cardíacas/complicações , Arritmias Cardíacas/etiologia , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/diagnóstico por imagem , Meios de Contraste , Morte Súbita Cardíaca/etiologia , Fibrose , Gadolínio , Humanos , Valor Preditivo dos Testes , Prognóstico , Volume Sistólico , Função Ventricular Esquerda , Remodelação Ventricular
6.
J Electrocardiol ; 72: 120-127, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35468456

RESUMO

PURPOSE: Cardiac resynchronization therapy (CRT) reduces ventricular activation times and electrical dyssynchrony, however the effect on repolarization is unclear. In this study, we sought to investigate the effect of CRT and left ventricular (LV) remodeling on dispersion of repolarization using electrocardiographic imaging (ECGi). METHODS: 11 patients with heart failure and electrical dyssynchrony underwent ECGi 1-day and 6-months post CRT. Reconstructed epicardial electrograms were used to create maps of activation time, repolarization time (RT) and activation recovery intervals (ARI) and calculate measures of RT, ARI and their dispersion. ARI was corrected for heart rate (cARI). RESULTS: Compared to baseline rhythm, LV cARI dispersion was significantly higher at 6 months (28.2 ± 7.7 vs 36.4 ± 7.2 ms; P = 0.03) but not after 1 day (28.2 ± 7.7 vs 34.4 ± 6.8 ms; P = 0.12). There were no significant differences from baseline to CRT for mean LV cARI or RT metrics. Significant LV remodeling (>15% reduction in end-systolic volume) was an independent predictor of increase in LV cARI dispersion (P = 0.04) and there was a moderate correlation between the degree of LV remodeling and the relative increase in LV cARI dispersion (R = -0.49) though this was not statistically significant (P = 0.12). CONCLUSION: CRT increases LV cARI dispersion, but this change was not fully apparent until 6 months post implant. The effects of CRT on LV cARI dispersion appeared to be dependent on LV reverse remodeling, which is in keeping with evidence that the risk of ventricular arrhythmia after CRT is higher in non-responders compared to responders.


Assuntos
Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Arritmias Cardíacas , Eletrocardiografia , Humanos , Resultado do Tratamento , Remodelação Ventricular/fisiologia
7.
PLoS Comput Biol ; 15(10): e1007421, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658247

RESUMO

This paper presents a morphological analysis of fibrotic scarring in non-ischemic dilated cardiomyopathy, and its relationship to electrical instabilities which underlie reentrant arrhythmias. Two dimensional electrophysiological simulation models were constructed from a set of 699 late gadolinium enhanced cardiac magnetic resonance images originating from 157 patients. Areas of late gadolinium enhancement (LGE) in each image were assigned one of 10 possible microstructures, which modelled the details of fibrotic scarring an order of magnitude below the MRI scan resolution. A simulated programmed electrical stimulation protocol tested each model for the possibility of generating either a transmural block or a transmural reentry. The outcomes of the simulations were compared against morphological LGE features extracted from the images. Models which blocked or reentered, grouped by microstructure, were significantly different from one another in myocardial-LGE interface length, number of components and entropy, but not in relative area and transmurality. With an unknown microstructure, transmurality alone was the best predictor of block, whereas a combination of interface length, transmurality and number of components was the best predictor of reentry in linear discriminant analysis.


Assuntos
Arritmias Cardíacas/patologia , Cardiomiopatia Dilatada/fisiopatologia , Cicatriz/patologia , Arritmias Cardíacas/etiologia , Estudos de Coortes , Simulação por Computador , Humanos , Interpretação de Imagem Assistida por Computador , Modelos Lineares , Imageamento por Ressonância Magnética/métodos , Modelos Teóricos , Infarto do Miocárdio/patologia , Isquemia Miocárdica/patologia , Miocárdio/patologia
8.
Pacing Clin Electrophysiol ; 43(7): 737-745, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32469085

RESUMO

BACKGROUND: Antitachycardia pacing (ATP), which may avoid unnecessary implantable cardioverter-defibrillator (ICD) shocks, does not always terminate ventricular arrhythmias (VAs). Mean entropy calculated using cardiac magnetic resonance texture analysis (CMR-TA) has been shown to predict appropriate ICD therapy. We examined whether scar heterogeneity, quantified by mean entropy, is associated with ATP failure and explore potential mechanisms using computer modeling. METHODS: A subanalysis of 114 patients undergoing CMR-TA where the primary endpoint was delivery of appropriate ICD therapy (ATP or shock therapy) was performed. Patients receiving appropriate ICD therapy (n = 33) were dichotomized into "successful ATP" versus "shock therapy" groups. In silico computer modeling was used to explore underlying mechanisms. RESULTS: A total of 16 of 33 (48.5%) patients had successful ATP to terminate VA, and 17 of 33 (51.5%) patients required shock therapy. Mean entropy was significantly higher in the shock versus successful ATP group (6.1 ± 0.5 vs 5.5 ± 0.7, P = .037). Analysis of patients receiving ATP (n = 22) showed significantly higher mean entropy in the six of 22 patients that failed ATP (followed by rescue ICD shock) compared to 16 of 22 that had successful ATP (6.3 ± 0.7 vs 5.5 ± 0.7, P = .048). Computer modeling suggested inability of the paced wavefront in ATP to successfully propagate from the electrode site through patchy fibrosis as a possible mechanism of failed ATP. CONCLUSIONS: Our findings suggest lower scar heterogeneity (mean entropy) is associated with successful ATP, whereas higher scar heterogeneity is associated with more aggressive VAs unresponsive to ATP requiring shock therapy that may be due to inability of the paced wavefront to propagate through scar and terminate the VA circuit.


Assuntos
Cicatriz/fisiopatologia , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Taquicardia Ventricular/diagnóstico por imagem , Taquicardia Ventricular/terapia , Simulação por Computador , Desfibriladores Implantáveis , Entropia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Taquicardia Ventricular/fisiopatologia , Falha de Tratamento
9.
Biophys J ; 117(12): 2361-2374, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31521328

RESUMO

The development of effective and safe therapies for scar-related ventricular tachycardias requires a detailed understanding of the mechanisms underlying the conduction block that initiates electrical re-entries associated with these arrhythmias. Conduction block has been often associated with electrophysiological changes that prolong action potential duration (APD) within the border zone (BZ) of chronically infarcted hearts. However, experimental evidence suggests that remodeling processes promoting conduction slowing as opposed to APD prolongation mark the chronic phase. In this context, the substrate for the initial block at the mouth of an isthmus/diastolic channel leading to ventricular tachycardia is unclear. The goal of this study was to determine whether electrophysiological parameters associated with conduction slowing can cause block and re-entry in the BZ. In silico experiments were conducted on two-dimensional idealized infarct tissue as well as on a cohort of postinfarction porcine left ventricular models constructed from ex vivo magnetic resonance imaging scans. Functional conduction slowing in the BZ was modeled by reducing sodium current density, whereas structural conduction slowing was represented by decreasing tissue conductivity and including fibrosis. The arrhythmogenic potential of APD prolongation was also tested as a basis for comparison. Within all models, the combination of reduced sodium current with structural remodeling more often degenerated into re-entry and, if so, was more likely to be sustained for more cycles. Although re-entries were also detected in experiments with prolonged APD, they were often not sustained because of the subsequent block caused by long-lasting repolarization. Functional and structural conditions associated with slow conduction rather than APD prolongation form a potent substrate for arrhythmogenesis at the isthmus/BZ of chronically infarcted hearts. Reduced excitability led to block while slow conduction shortened the wavelength of propagation, facilitating the sustenance of re-entries. These findings provide important insights for models of patient-specific risk stratification and therapy planning.


Assuntos
Sistema de Condução Cardíaco/fisiopatologia , Modelos Cardiovasculares , Infarto do Miocárdio/fisiopatologia , Potenciais de Ação , Animais , Fibrose , Cinética , Imageamento por Ressonância Magnética , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Suínos , Taquicardia Ventricular/complicações
10.
J Cardiovasc Magn Reson ; 21(1): 62, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31597563

RESUMO

BACKGROUND: Ex-vivo cardiovascular magnetic resonance (CMR) imaging has played an important role in the validation of in-vivo CMR characterization of pathological processes. However, comparison between in-vivo and ex-vivo imaging remains challenging due to shape changes occurring between the two states, which may be non-uniform across the diseased heart. A novel two-step process to facilitate registration between ex-vivo and in-vivo CMR was developed and evaluated in a porcine model of chronic myocardial infarction (MI). METHODS: Seven weeks after ischemia-reperfusion MI, 12 swine underwent in-vivo CMR imaging with late gadolinium enhancement followed by ex-vivo CMR 1 week later. Five animals comprised the control group, in which ex-vivo imaging was undertaken without any support in the LV cavity, 7 animals comprised the experimental group, in which a two-step registration optimization process was undertaken. The first step involved a heart specific flexible 3D printed scaffold generated from in-vivo CMR, which was used to maintain left ventricular (LV) shape during ex-vivo imaging. In the second step, a non-rigid co-registration algorithm was applied to align in-vivo and ex-vivo data. Tissue dimension changes between in-vivo and ex-vivo imaging were compared between the experimental and control group. In the experimental group, tissue compartment volumes and thickness were compared between in-vivo and ex-vivo data before and after non-rigid registration. The effectiveness of the alignment was assessed quantitatively using the DICE similarity coefficient. RESULTS: LV cavity volume changed more in the control group (ratio of cavity volume between ex-vivo and in-vivo imaging in control and experimental group 0.14 vs 0.56, p < 0.0001) and there was a significantly greater change in the short axis dimensions in the control group (ratio of short axis dimensions in control and experimental group 0.38 vs 0.79, p < 0.001). In the experimental group, prior to non-rigid co-registration the LV cavity contracted isotropically in the ex-vivo condition by less than 20% in each dimension. There was a significant proportional change in tissue thickness in the healthy myocardium (change = 29 ± 21%), but not in dense scar (change = - 2 ± 2%, p = 0.034). Following the non-rigid co-registration step of the process, the DICE similarity coefficients for the myocardium, LV cavity and scar were 0.93 (±0.02), 0.89 (±0.01) and 0.77 (±0.07) respectively and the myocardial tissue and LV cavity volumes had a ratio of 1.03 and 1.00 respectively. CONCLUSIONS: The pattern of the morphological changes seen between the in-vivo and the ex-vivo LV differs between scar and healthy myocardium. A 3D printed flexible scaffold based on the in-vivo shape of the LV cavity is an effective strategy to minimize morphological changes in the ex-vivo LV. The subsequent non-rigid registration step further improved the co-registration and local comparison between in-vivo and ex-vivo data.


Assuntos
Imageamento por Ressonância Magnética , Modelos Anatômicos , Modelos Cardiovasculares , Infarto do Miocárdio/diagnóstico por imagem , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Impressão Tridimensional , Animais , Doença Crônica , Modelos Animais de Doenças , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Maleabilidade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Sus scrofa , Função Ventricular Esquerda , Remodelação Ventricular
11.
Biophys J ; 115(12): 2486-2498, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30503533

RESUMO

BACKGROUND: Understanding the biophysical processes by which electrical stimuli applied to cardiac tissue may result in local activation is important in both the experimental and clinical electrophysiology laboratory environments, as well as for gaining a more in-depth knowledge of the mechanisms of focal-trigger-induced arrhythmias. Previous computational models have predicted that local myocardial tissue architecture alone may significantly modulate tissue excitability, affecting both the local stimulus current required to excite the tissue and the local effective refractory period (ERP). In this work, we present experimental validation of this structural modulation of local tissue excitability on the endocardial tissue surface, use computational models to provide mechanistic understanding of this phenomena in relation to localized changes in electrotonic loading, and demonstrate its implications for the capture of afterdepolarizations. METHODS AND RESULTS: Experiments on rabbit ventricular wedge preparations showed that endocardial ridges (surfaces of negative mean curvature) had a stimulus capture threshold that was 0.21 ± 0.03 V less than endocardial grooves (surfaces of positive mean curvature) for pairwise comparison (24% reduction, corresponding to 56.2 ± 6.4% of the energy). When stimulated at the minimal stimulus strength for capture, ridge locations showed a shorter ERP than grooves (n = 6, mean pairwise difference 7.4 ± 4.2 ms). When each site was stimulated with identical-strength stimuli, the difference in ERP was further increased (mean pairwise difference 15.8 ± 5.3 ms). Computational bidomain models of highly idealized cylindrical endocardial structures qualitatively agreed with these findings, showing that such changes in excitability are driven by structural modulation in electrotonic loading, quantifying this relationship as a function of surface curvature. Simulations further showed that capture of delayed afterdepolarizations was more likely in trabecular ridges than grooves, driven by this difference in loading. CONCLUSIONS: We have demonstrated experimentally and explained mechanistically in computer simulations that the ability to capture tissue on the endocardial surface depends upon the local tissue architecture. These findings have important implications for deepening our understanding of excitability differences related to anatomical structure during stimulus application that may have important applications in the translation of novel experimental optogenetics pacing strategies. The uncovered preferential vulnerability to capture of afterdepolarizations of endocardial ridges, compared to grooves, provides important insight for understanding the mechanisms of focal-trigger-induced arrhythmias.


Assuntos
Endocárdio/citologia , Endocárdio/fisiologia , Ventrículos do Coração/citologia , Modelos Cardiovasculares , Período Refratário Eletrofisiológico
12.
Chaos ; 27(9): 093913, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28964115

RESUMO

Novel low-energy defibrillation therapies are thought to be driven by virtual-electrodes (VEs), due to the interaction of applied monophasic electric shocks with fine-scale anatomical structures within the heart. Significant inter-species differences in the cardiac (micro)-anatomy exist, however, particularly with respect to the degree of endocardial trabeculations, which may underlie important differences in response to low-energy defibrillation protocols. Understanding the interaction of monophasic electric fields with the specific human micro-anatomy is therefore imperative in facilitating the translation and optimisation of these promising experimental therapies to the clinic. In this study, we sought to investigate how electric fields from implanted devices interact with the highly trabeculated human endocardial surface to better understand shock success in order to help optimise future clinical protocols. A bi-ventricular human computational model was constructed from high resolution (350 µm) ex-vivo MR data, including anatomically accurate endocardial structures. Monophasic shocks were applied between a basal right ventricular catheter and an exterior ground. Shocks of varying strengths were applied with both anodal [positive right ventricle (RV) electrode] and cathodal (negative RV electrode) polarities at different states of tissue refractoriness and during induced arrhythmias. Anodal shocks induced isolated positive VEs at the distal side of "detached" trabeculations, which rapidly spread into hyperpolarised tissue on the surrounding endocardial surfaces following the shock. Anodal shocks thus depolarised more tissue 10 ms after the shock than cathodal shocks where the propagation of activation from VEs induced on the proximal side of "detached" trabeculations was prevented due to refractory endocardium. Anodal shocks increased arrhythmia complexity more than cathodal shocks during failed anti-arrhythmia shocks. In conclusion, multiple detached trabeculations in the human ventricle interact with anodal stimuli to induce multiple secondary sources from VEs, facilitating more rapid shock-induced ventricular excitation compared to cathodal shocks. Such a mechanism may help explain inter-species differences in response to shocks and help to develop novel defibrillation strategies.


Assuntos
Cardioversão Elétrica , Endocárdio/patologia , Eletrodos , Ventrículos do Coração/patologia , Humanos , Imageamento por Ressonância Magnética , Miocárdio/patologia , Tamanho do Órgão , Taquicardia Ventricular/patologia
13.
Adv Exp Med Biol ; 859: 367-404, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26238061

RESUMO

Computational models have been recently applied to simulate and better understand the nature of fluorescent photon scattering and optical signal distortion during cardiac optical imaging. The goal of such models is both to provide a useful post-processing tool to facilitate a more accurate and faithful comparison between computational simulations of electrical activity and experiments, as well as providing essential insight into the mechanisms underlying this distortion, suggesting ways in which it may be controlled or indeed utilised to maximise the information derived from the recorded fluorescent signal. Here, we present different modelling methodologies developed and used in the field to simulate both the explicit processes involved in optical signal synthesis and the resulting consequences of the effects of photon scattering within the myocardium upon the optically-detected signal. We focus our attentions to two main types of modelling approaches used to simulate light transport in cardiac tissue, specifically continuous (reaction-diffusion) and discrete stochastic (Monte Carlo) methods. For each method, we provide both a summary of the necessary methodological details of such models, in addition to brief reviews of relevant application studies which have sought to apply these methods to elucidate important information regarding experimentally-recorded optical signals under different circumstances.


Assuntos
Coração/fisiologia , Modelos Cardiovasculares , Imagem Óptica/estatística & dados numéricos , Óptica e Fotônica/estatística & dados numéricos , Fótons , Imagens com Corantes Sensíveis à Voltagem/estatística & dados numéricos , Animais , Difusão , Corantes Fluorescentes/química , Coração/fisiopatologia , Humanos , Método de Monte Carlo , Imagem Óptica/métodos , Óptica e Fotônica/métodos , Coelhos , Espalhamento de Radiação , Imagens com Corantes Sensíveis à Voltagem/métodos
14.
Am J Physiol Heart Circ Physiol ; 306(7): H1041-53, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24464758

RESUMO

Although the application of a 9-V battery to the epicardial surface is a simple method of ventricular fibrillation induction, the fundamental mechanisms underlying this process remain unstudied. We used a combined experimental and modelling approach to understand how the interaction of direct current (DC) from a battery may induce reentrant activity within rabbit ventricles and its dependence on battery application timing and duration. A rabbit ventricular computational model was used to simulate 9-V battery stimulation for different durations at varying onset times during sinus rhythm. Corresponding high-resolution optical mapping measurements were conducted on rabbit hearts with DC stimuli applied via a relay system. DC application to diastolic tissue induced anodal and cathodal make excitations in both simulations and experiments. Subsequently, similar static epicardial virtual electrode patterns were formed that interacted with sinus beats but did not induce reentry. Upon battery release during diastole, break excitations caused single ectopics, similar to application, before sinus rhythm resumed. Reentry induction was possible for short battery applications when break excitations were slowed and forced to take convoluted pathways upon interaction with refractory tissue from prior make excitations or sinus beats. Short-lived reentrant activity could be induced for battery release shortly after a sinus beat for longer battery applications. In conclusion, the application of a 9-V battery to the epicardial surface induces reentry through a complex interaction of break excitations after battery release with prior induced make excitations or sinus beats.


Assuntos
Fontes de Energia Elétrica , Sistema de Condução Cardíaco/fisiopatologia , Ventrículos do Coração/fisiopatologia , Pericárdio/fisiopatologia , Taquicardia Reciprocante/fisiopatologia , Potenciais de Ação , Animais , Simulação por Computador , Diástole , Modelos Animais de Doenças , Estimulação Elétrica , Análise de Elementos Finitos , Modelos Cardiovasculares , Coelhos , Período Refratário Eletrofisiológico , Taquicardia Reciprocante/etiologia , Fatores de Tempo , Imagens com Corantes Sensíveis à Voltagem
16.
Comput Methods Programs Biomed ; 251: 108189, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38728827

RESUMO

BACKGROUND AND OBJECTIVE: Simulation of cardiac electrophysiology (CEP) is an important research tool that is increasingly being adopted in industrial and clinical applications. Typical workflows for CEP simulation consist of a sequence of processing stages starting with building an anatomical model and then calibrating its electrophysiological properties to match observable data. While the calibration stages are common and generalizable, most CEP studies re-implement these steps in complex and highly variable workflows. This lack of standardization renders the execution of computational CEP studies in an efficient, robust, and reproducible manner a significant challenge. Here, we propose ForCEPSS as an efficient and robust, yet flexible, software framework for standardizing CEP simulation studies. METHODS AND RESULTS: Key processing stages of CEP simulation studies are identified and implemented in a standardized workflow that builds on openCARP1 Plank et al. (2021) and the Python-based carputils2 framework. Stages include (i) the definition and initialization of action potential phenotypes, (ii) the tissue scale calibration of conduction properties, (iii) the functional initialization to approximate a limit cycle corresponding to the dynamic reference state according to an experimental protocol, and, (iv) the execution of the CEP study where the electrophysiological response to a perturbation of the limit cycle is probed. As an exemplar application, we employ ForCEPSS to prepare a CEP study according to the Virtual Arrhythmia Risk Prediction protocol used for investigating the arrhythmogenic risk of developing infarct-related ventricular tachycardia (VT) in ischemic cardiomyopathy patients. We demonstrate that ForCEPSS enables a fully automated execution of all stages of this complex protocol. CONCLUSION: ForCEPSS offers a novel comprehensive, standardized, and automated CEP simulation workflow. The high degree of automation accelerates the execution of CEP simulation studies, reduces errors, improves robustness, and makes CEP studies reproducible. Verification of simulation studies within the CEP modeling community is thus possible. As such, ForCEPSS makes an important contribution towards increasing transparency, standardization, and reproducibility of in silico CEP experiments.


Assuntos
Potenciais de Ação , Simulação por Computador , Software , Humanos , Arritmias Cardíacas/fisiopatologia , Eletrofisiologia Cardíaca , Calibragem , Modelos Cardiovasculares , Coração/fisiologia
17.
Heart Rhythm ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38670247

RESUMO

BACKGROUND: Implantable cardiac defibrillator (ICD) implantation can protect against sudden cardiac death after myocardial infarction. However, improved risk stratification for device requirement is still needed. OBJECTIVE: The purpose of this study was to improve assessment of postinfarct ventricular electropathology and prediction of appropriate ICD therapy by combining late gadolinium enhancement (LGE) and advanced computational modeling. METHODS: ADAS 3D LV (ADAS LV Medical, Barcelona, Spain) and custom-made software were used to generate 3-dimensional patient-specific ventricular models in a prospective cohort of patients with a myocardial infarction (N = 40) having undergone LGE imaging before ICD implantation. Corridor metrics and 3-dimensional surface features were computed from LGE images. The Virtual Induction and Treatment of Arrhythmias (VITA) framework was applied to patient-specific models to comprehensively probe the vulnerability of the scar substrate to sustaining reentrant circuits. Imaging and VITA metrics, related to the numbers of induced ventricular tachycardias and their corresponding round trip times (RTTs), were compared with ICD therapy during follow-up. RESULTS: Patients with an event (n = 17) had a larger interface between healthy myocardium and scar and higher VITA metrics. Cox regression analysis demonstrated a significant independent association with an event: interface (hazard ratio [HR] 2.79; 95% confidence interval [CI] 1.44-5.44; P < .01), unique ventricular tachycardias (HR 1.67; 95% CI 1.04-2.68; P = .03), mean RTT (HR 2.14; 95% CI 1.11-4.12; P = .02), and maximum RTT (HR 2.13; 95% CI 1.19-3.81; P = .01). CONCLUSION: A detailed quantitative analysis of LGE-based scar maps, combined with advanced computational modeling, can accurately predict ICD therapy and could facilitate the early identification of high-risk patients in addition to left ventricular ejection fraction.

18.
Heart Rhythm ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825299

RESUMO

BACKGROUND: Obesity confers higher risks of cardiac arrhythmias. The extent to which weight loss reverses subclinical proarrhythmic adaptations in arrhythmia-free obese individuals is unknown. OBJECTIVE: The purpose of this study was to study structural, electrophysiological, and autonomic remodeling in arrhythmia-free obese patients and their reversibility with bariatric surgery using electrocardiographic imaging (ECGi). METHODS: Sixteen arrhythmia-free obese patients (mean age 43 ± 12 years; 13 females; BMI 46.7 ± 5.5 kg/m2) had ECGi pre-bariatric surgery, of whom 12 had ECGi postsurgery (BMI 36.8 ± 6.5 kg/m2). Sixteen age- and sex-matched lean healthy individuals (mean age 42 ± 11 years; BMI 22.8 ± 2.6 kg/m2) acted as controls and had ECGi only once. RESULTS: Obesity was associated with structural (increased epicardial fat volumes and left ventricular mass), autonomic (blunted heart rate variability), and electrophysiological (slower atrial conduction and steeper ventricular repolarization gradients) remodeling. After bariatric surgery, there was partial structural reverse remodeling, with a reduction in epicardial fat volumes (68.7 cm3 vs 64.5 cm3; P = .0010) and left ventricular mass (33 g/m2.7 vs 25 g/m2.7; P < .0005). There was also partial electrophysiological reverse remodeling with a reduction in mean spatial ventricular repolarization gradients (26 mm/ms vs 19 mm/ms; P = .0009), although atrial activation remained prolonged. Heart rate variability, quantified by standard deviation of successive differences in R-R intervals, was also partially improved after bariatric surgery (18.7 ms vs 25.9 ms; P = .017). Computational modeling showed that presurgery obese hearts had a larger window of vulnerability to unidirectional block and had an earlier spiral-wave breakup with more complex reentry patterns than did postsurgery counterparts. CONCLUSION: Obesity is associated with adverse electrophysiological, structural, and autonomic remodeling that is partially reversed after bariatric surgery. These data have important implications for bariatric surgery weight thresholds and weight loss strategies.

19.
Am J Physiol Heart Circ Physiol ; 304(9): H1240-52, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23436328

RESUMO

Electrophysiological heterogeneity in action potential recordings from healthy intact hearts remains highly variable and, where present, is almost entirely abolished at fast pacing rates. Consequently, the functional importance of intrinsic action potential duration (APD) heterogeneity in healthy ventricles, and particularly its role during rapidly activating reentrant arrhythmias, remain poorly understood. By incorporating both transmural and apicobasal APD heterogeneity within a biventricular rabbit computational model and comparing with an equivalent homogeneous model, we directly investigated the functional importance of intrinsic APD heterogeneity under fast pacing and arrhythmogenic protocols. Although differences in APD were significantly modulated at the tissue level during pacing and further reduced as pacing frequency increased, small differences were still noticeable. Such differences were further marginally accentuated/attenuated via electrotonic effects relative to wavefront propagation directions. The remaining small levels of APD heterogeneity under the fastest pacing frequencies resulted in arrhythmia initiation via heterogeneous conduction block, in contrast to complete block in the homogeneous model. Such induction mechanisms were more evident during premature stimuli at slower paced rhythms where intrinsic heterogeneity remained to a greater degree. During sustained arrhythmias, however, intrinsic heterogeneity made little difference to overall reentrant behavior, either visually, or in terms of duration, metrics quantifying filament/phase singularity dynamics, and global electrocardiogram characteristics. These findings suggest that, despite being important during arrhythmia initiation, intrinsic electrophysiological heterogeneity plays little functional role during rapid pacing and sustained arrhythmia dynamics in the healthy ventricle and thus questions the need to incorporate such detail in computational models when simulating rapid arrhythmias.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/fisiopatologia , Disfunção Ventricular/fisiopatologia , Função Ventricular/fisiologia , Animais , Modelos Cardiovasculares , Coelhos
20.
Cardiovasc Res ; 119(2): 465-476, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35727943

RESUMO

AIMS: Long QT syndrome (LQTS) carries a risk of life-threatening polymorphic ventricular tachycardia (Torsades de Pointes, TdP) and is a major cause of premature sudden cardiac death. TdP is induced by R-on-T premature ventricular complexes (PVCs), thought to be generated by cellular early-afterdepolarisations (EADs). However, EADs in tissue require cellular synchronisation, and their role in TdP induction remains unclear. We aimed to determine the mechanism of TdP induction in rabbit hearts with acquired LQTS (aLQTS). METHODS AND RESULTS: Optical mapping of action potentials (APs) and intracellular Ca2+ was performed in Langendorff-perfused rabbit hearts (n = 17). TdP induced by R-on-T PVCs was observed during aLQTS (50% K+/Mg++ & E4031) conditions in all hearts (P < 0.0001 vs. control). Islands of AP prolongation bounded by steep voltage gradients (VGs) were consistently observed before arrhythmia and peak VGs were more closely related to the PVC upstroke than EADs, both temporally (7 ± 5 ms vs. 44 ± 27 ms, P < 0.0001) and spatially (1.0 ± 0.7 vs. 3.6 ± 0.9 mm, P < 0.0001). PVCs were initiated at estimated voltages of ∼ -40 mV and had upstroke dF/dtmax and Vm-Ca2+ dynamics compatible with ICaL activation. Computational simulations demonstrated that PVCs could arise directly from VGs, through electrotonic triggering of ICaL. In experiments and the model, sub-maximal L-type Ca2+ channel (LTCC) block (200 nM nifedipine and 90% gCaL, respectively) abolished both PVCs and TdP in the continued presence of aLQTS. CONCLUSION: These data demonstrate that ICaL activation at sites displaying steep VGs generates the PVCs which induce TdP, providing a mechanism and rationale for LTCC blockers as a novel therapeutic approach in LQTS.


Assuntos
Síndrome do QT Longo , Torsades de Pointes , Complexos Ventriculares Prematuros , Animais , Coelhos , Cálcio , Torsades de Pointes/induzido quimicamente , Potenciais de Ação , Proteínas de Ligação a DNA , Eletrocardiografia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa