Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 295(42): 14391-14401, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32817318

RESUMO

The HIV-1 Gag protein is responsible for genomic RNA (gRNA) packaging and immature viral particle assembly. Although the presence of gRNA in virions is required for viral infectivity, in its absence, Gag can assemble around cellular RNAs and form particles resembling gRNA-containing particles. When gRNA is expressed, it is selectively packaged despite the presence of excess host RNA, but how it is selectively packaged is not understood. Specific recognition of a gRNA packaging signal (Psi) has been proposed to stimulate the efficient nucleation of viral assembly. However, the heterogeneity of Gag-RNA interactions renders capturing this transient nucleation complex using traditional structural biology approaches challenging. Here, we used native MS to investigate RNA binding of wild-type (WT) Gag and Gag lacking the p6 domain (GagΔp6). Both proteins bind to Psi RNA primarily as dimers, but to a control RNA primarily as monomers. The dimeric complexes on Psi RNA require an intact dimer interface within Gag. GagΔp6 binds to Psi RNA with high specificity in vitro and also selectively packages gRNA in particles produced in mammalian cells. These studies provide direct support for the idea that Gag binding to Psi specifically promotes nucleation of Gag-Gag interactions at the early stages of immature viral particle assembly in a p6-independent manner.


Assuntos
HIV-1/metabolismo , Sequência de Empacotamento Viral/genética , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Dimerização , Células HEK293 , Humanos , Cinética , Conformação de Ácido Nucleico , Ligação Proteica , Multimerização Proteica , RNA Viral/química , RNA Viral/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/deficiência , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
2.
BMC Genomics ; 20(1): 382, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31096907

RESUMO

BACKGROUND: Several lines of evidence suggest that recombination plays a central role in replication and evolution of herpes simplex virus-1 (HSV-1). G-quadruplex (G4)-motifs have been linked to recombination events in human and microbial genomes, but their role in recombination has not been studied in DNA viruses. RESULTS: The availability of near full-length sequences from 40 HSV-1 recombinant strains with exact position of the recombination breakpoints provided us with a unique opportunity to investigate the role of G4-motifs in recombination among herpes viruses. We mapped the G4-motifs in the parental and all the 40 recombinant strains. Interestingly, the genome-wide distribution of breakpoints closely mirrors the G4 densities in the HSV-1 genome; regions of the genome with higher G4 densities had higher number of recombination breakpoints. Biophysical characterization of oligonucleotides from a subset of predicted G4-motifs confirmed the formation of G-quadruplex structures. Our analysis also reveals that G4-motifs are enriched in regions flanking the recombination breakpoints. Interestingly, about 11% of breakpoints lie within a G4-motif, making these DNA secondary structures hotspots for recombination in the HSV-1 genome. Breakpoints within G4-motifs predominantly lie within G4-clusters rather than individual G4-motifs. Of note, we identified the terminal guanosine of G4-clusters at the boundaries of the UL (unique long) region on either side of the OriL (origin of replication within UL) represented the commonest breakpoint among the HSV-1 recombinants. CONCLUSION: Our findings suggest a correlation between the HSV-1 recombination landscape and the distribution of G4-motifs and G4-clusters, with possible implications for the evolution of DNA viruses.


Assuntos
Pontos de Quebra do Cromossomo , DNA Viral/genética , Quadruplex G , Genoma Viral , Herpesvirus Humano 1/genética , Recombinação Genética , Replicação do DNA , Humanos
3.
Nucleic Acids Res ; 45(19): 11268-11280, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28981800

RESUMO

HBV genotypes differ in pathogenicity. In addition, genotype-specific differences in the regulation of transcription and virus replication exist in HBV, but the underlying mechanisms are unknown. Here, we show the presence of a G-quadruplex motif in the promoter of the preS2/S gene; this G-quadruplex is highly conserved only in HBV genotype B but not in other HBV genotypes. We demonstrate that this G-quadruplex motif forms a hybrid intramolecular G-quadruplex structure. Interestingly, mutations disrupting the G-quadruplex in HBV genotype B reduced the preS2/S promoter activity, leading to reduced hepatitis B surface antigen (HBsAg) levels. G-quadruplex ligands stabilized the G-quadruplex in genotype B and enhanced the preS2/S promoter activity. Furthermore, mutations disrupting the G-quadruplex in the full-length HBV genotype B constructs were associated with impaired virion secretion. In contrast to typical G-quadruplexes within promoters which are negative regulators of transcription the G-quadruplex in the preS2/S promoter of HBV represents an unconventional positive regulatory element. Our findings highlight (a) G-quadruplex mediated enhancement of transcription and virion secretion in HBV and (b) a yet unknown role for DNA secondary structures in complex genotype-specific regulatory mechanisms in virus genomes.


Assuntos
Quadruplex G , Genes env/genética , Vírus da Hepatite B/genética , Regiões Promotoras Genéticas/genética , Vírion/genética , Sequência de Bases , Linhagem Celular Tumoral , Dicroísmo Circular , DNA Viral/química , DNA Viral/genética , DNA Viral/metabolismo , Genoma Viral/genética , Genótipo , Vírus da Hepatite B/metabolismo , Humanos , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica , Vírion/metabolismo , Replicação Viral/genética
4.
BMC Genomics ; 17(1): 949, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27871228

RESUMO

BACKGROUND: G-quadruplexes are increasingly recognized as regulatory elements in human, animal, bacterial and plant genomes. The presence and function of G-quadruplexes are not well studied among herpesviruses; in particular, there are no systematic genome-wide analysis of these important secondary structures in herpesvirus genomes. RESULTS: We performed genome-wide analysis of putative quadruplex sequences (PQS) in human herpesviruses. We found unusually high PQS densities among human herpesviruses. PQS are enriched in the repeat regions and regulatory regions of human herpesviruses. Interestingly, PQS densities are higher in regulatory regions of immediate early genes compared to early and late genes in most herpesviruses. In addition, the majority of genes functionally conserved across human herpesviruses contain one or more PQS within the regulatory regions. We also describe the existence of unique intramolecular PQS repeats or repetitive G-quadruplex motifs in herpesviruses. Functional studies confirm a role for G-quadruplexes in regulating the gene expression of human herpesviruses. CONCLUSION: The pervasiveness of PQS, their enrichment and conservation at specific genomic locations suggest that these structural entities may represent a novel class of functional elements in herpesviruses. Our findings provide the necessary framework for studies on the biological role of G-quadruplexes in herpesviruses.


Assuntos
DNA Viral/química , DNA Viral/genética , Quadruplex G , Genoma Viral , Estudo de Associação Genômica Ampla , Genômica , Herpesviridae/genética , Alphaherpesvirinae/genética , Genes Precoces , Genômica/métodos , Humanos , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Sequências Repetitivas de Ácido Nucleico
5.
J Gen Virol ; 96(10): 3109-3117, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26242411

RESUMO

Defective hepatitis B virus (dHBV) particles contain genomes corresponding to singly spliced HBV RNA. A limited number of studies show that dHBV is present in all chronically HBV-infected patients. Clinical studies have linked dHBV and dHBV gene products to high virus loads and liver damage. The replication characteristics of dHBV genomes remain poorly understood. We found that the splice donor/acceptor sites critical for the formation of dHBV genomes are conserved across HBV genotypes. We report a novel method to create dHBV constructs from corresponding wild-type (WT) HBV constructs. We assessed the transcriptional characteristics of the dHBV constructs with those of the corresponding WT construct using a cell culture model. Interestingly, dHBV constructs had higher pre-genomic RNA levels, transcription efficiency, HBV e antigen levels and intracellular HBV core antigen levels compared with the corresponding WT HBV constructs. Our findings highlight previously unrecognized fundamental molecular characteristics of dHBV genomes and their potential role in the pathogenesis of HBV infection.


Assuntos
Vírus Defeituosos/genética , Vírus da Hepatite B/genética , RNA Viral/biossíntese , Transcrição Gênica , Antígenos Virais/biossíntese , Linhagem Celular , Hepatócitos/virologia , Humanos
6.
J Virol ; 87(24): 13816-24, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24109231

RESUMO

Parvoviruses are rapidly evolving viruses that infect a wide range of hosts, including vertebrates and invertebrates. Extensive methylation of the parvovirus genome has been recently demonstrated. A global pattern of methylation of CpG dinucleotides is seen in vertebrate genomes, compared to "fractional" methylation patterns in invertebrate genomes. It remains unknown if the loss of CpG dinucleotides occurs in all viruses of a given DNA virus family that infect host species spanning across vertebrates and invertebrates. We investigated the link between the extent of CpG dinucleotide depletion among autonomous parvoviruses and the evolutionary lineage of the infected host. We demonstrate major differences in the relative abundance of CpG dinucleotides among autonomous parvoviruses which share similar genome organization and common ancestry, depending on the infected host species. Parvoviruses infecting vertebrate hosts had significantly lower relative abundance of CpG dinucleotides than parvoviruses infecting invertebrate hosts. The strong correlation of CpG dinucleotide depletion with the gain in TpG/CpA dinucleotides and the loss of TpA dinucleotides among parvoviruses suggests a major role for CpG methylation in the evolution of parvoviruses. Our data present evidence that links the relative abundance of CpG dinucleotides in parvoviruses to the methylation capabilities of the infected host. In sum, our findings support a novel perspective of host-driven evolution among autonomous parvoviruses.


Assuntos
Fosfatos de Dinucleosídeos/genética , Evolução Molecular , Interações Hospedeiro-Patógeno , Invertebrados/virologia , Infecções por Parvoviridae/veterinária , Infecções por Parvoviridae/virologia , Parvovirus/genética , Vertebrados/virologia , Animais , Metilação de DNA , Fosfatos de Dinucleosídeos/metabolismo , Genoma Viral , Humanos , Invertebrados/genética , Invertebrados/metabolismo , Metilação , Dados de Sequência Molecular , Infecções por Parvoviridae/genética , Infecções por Parvoviridae/metabolismo , Parvovirus/classificação , Parvovirus/fisiologia , Filogenia , Vertebrados/genética , Vertebrados/metabolismo
7.
mBio ; : e0115824, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912776

RESUMO

We have investigated the function of inositol hexakisphosphate (IP6) and inositol pentakisphosphate (IP5) in the replication of murine leukemia virus (MLV). While IP6 is known to be critical for the life cycle of HIV-1, its significance in MLV remains unexplored. We find that IP6 is indeed important for MLV replication. It significantly enhances endogenous reverse transcription (ERT) in MLV. Additionally, a pelleting-based assay reveals that IP6 can stabilize MLV cores, thereby facilitating ERT. We find that IP5 and IP6 are packaged in MLV particles. However, unlike HIV-1, MLV depends upon the presence of IP6 and IP5 in target cells for successful infection. This IP6/5 requirement for infection is reflected in impaired reverse transcription observed in IP6/5-deficient cell lines. In summary, our findings demonstrate the importance of capsid stabilization by IP6/5 in the replication of diverse retroviruses; we suggest possible reasons for the differences from HIV-1 that we observed in MLV.IMPORTANCEInositol hexakisphosphate (IP6) is crucial for the assembly and replication of HIV-1. IP6 is packaged in HIV-1 particles and stabilizes the viral core enabling it to synthesize viral DNA early in viral infection. While its importance for HIV-1 is well established, its significance for other retroviruses is unknown. Here we report the role of IP6 in the gammaretrovirus, murine leukemia virus (MLV). We found that like HIV-1, MLV packages IP6, and as in HIV-1, IP6 stabilizes the MLV core thus promoting reverse transcription. Interestingly, we discovered a key difference in the role of IP6 in MLV versus HIV-1: while HIV-1 is not dependent upon IP6 levels in target cells, MLV replication is significantly reduced in IP6-deficient cell lines. We suggest that this difference in IP6 requirements reflects key differences between HIV-1 and MLV replication.

8.
bioRxiv ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38464197

RESUMO

We have investigated the function of inositol hexakisphosphate (IP6) and inositol pentakisphosphate (IP5) in the replication of murine leukemia virus (MLV). While IP6 is known to be critical for the life cycle of HIV-1, its significance in MLV remains unexplored. We find that IP6 is indeed important for MLV replication. It significantly enhances endogenous reverse transcription (ERT) in MLV. Additionally, a pelleting-based assay reveals that IP6 can stabilize MLV cores, thereby facilitating ERT. We find that IP5 and IP6 are packaged in MLV particles. However, unlike HIV-1, MLV depends upon the presence of IP6 and IP5 in target cells for successful infection. This IP6/5 requirement for infection is reflected in impaired reverse transcription observed in IP6/5-deficient cell lines. In summary, our findings demonstrate the importance of capsid stabilization by IP6/5 in the replication of diverse retroviruses; we suggest possible reasons for the differences from HIV-1 that we observed in MLV.

9.
Biochim Biophys Acta Gene Regul Mech ; 1863(3): 194479, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31931179

RESUMO

Cellular prion protein (PrP) misfolds into an aberrant and infectious scrapie form (PrPSc) that lead to fatal transmissible spongiform encephalopathies (TSEs). Association of prions with G-quadruplex (GQ) forming nucleic acid motifs has been reported, but implications of these interactions remain elusive. Herein, we show that the promoter region of the human prion gene (PRNP) contains two putative GQ motifs (Q1 and Q2) that assume stable, hybrid, intra-molecular quadruplex structures and bind with high affinity to PrP. Here, we investigate the ability of PrP to bind to the quadruplexes in its own promoter. We used a battery of techniques including SPR, NMR, CD, MD simulations and cell culture-based reporter assays. Our results show that PrP auto-regulates its expression by binding and resolving the GQs present in its own promoter. Furthermore, we map this resolvase-like activity to the N-terminal region (residues 23-89) of PrP. Our findings highlight a positive transcriptional-translational feedback regulation of the PRNP gene by PrP through dynamic unwinding of GQs in its promoter. Taken together, our results shed light on a yet unknown mechanism of regulation of the PRNP gene. This work provides the necessary framework for a plethora of studies on understanding the regulation of PrP levels and its implications in prion pathogenesis.


Assuntos
Quadruplex G , Regulação da Expressão Gênica , Proteínas Priônicas/genética , Regiões Promotoras Genéticas , Transcrição Gênica , Células Cultivadas , Retroalimentação Fisiológica , Humanos , Proteínas Priônicas/biossíntese , Proteínas Priônicas/química , Proteínas Priônicas/metabolismo
10.
ACS Infect Dis ; 4(5): 744-751, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29493219

RESUMO

Packaging signals ( pac1 and pac2) of human herpesviruses (HHVs) that contain GC-rich elements are essential for cleavage and packaging of the virus. Here, we report the presence of putative G-quadruplex sequences (PQSs) in the packaging signal ( pac1) of all HHVs. Importantly, the residues critical for the formation of G-quadruplex structures were highly conserved as compared to those not critical for the formation of this DNA secondary structure, indicating that G-quadruplexes are positively selected within pac1 in the evolution of herpesviruses. CD spectroscopy, NMR spectroscopy, native/denaturing gel, and DMS footprinting confirmed the formation of G-quadruplex structures in all pac1 PQS oligonucleotides analyzed; the majority of the PQS had the propensity to form intermolecular structures. The presence of highly conserved G-quadruplex motifs at genomic locations critical for virus packaging has not been previously recognized. Our findings provide a new perspective on the putative functions of G-quadruplexes in virus genomes.


Assuntos
Sequência Conservada , DNA Viral/genética , Quadruplex G , Sequência Rica em GC , Herpesviridae/genética , Motivos de Nucleotídeos , Montagem de Vírus/genética , Sequência de Bases , DNA Viral/química , Genoma Viral , Infecções por Herpesviridae/virologia , Humanos , Análise Espectral
11.
Sci Rep ; 7(1): 8162, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811638

RESUMO

The clinical course of HIV-1 varies greatly among infected individuals. Despite extensive research, virus factors associated with slow-progression remain poorly understood. Identification of unique HIV-1 genomic signatures linked to slow-progression remains elusive. We investigated CpG dinucleotide content in HIV-1 envelope gene as a potential virus factor in disease progression. We analysed 1808 HIV-1 envelope gene sequences from three independent longitudinal studies; this included 1280 sequences from twelve typical-progressors and 528 sequences from six slow-progressors. Relative abundance of CpG dinucleotides and relative synonymous codon usage (RSCU) for CpG-containing codons among HIV-1 envelope gene sequences from typical-progressors and slow-progressors were analysed. HIV-1 envelope gene sequences from slow-progressors have high-CpG dinucleotide content and increased number of CpG-containing codons as compared to typical-progressors. Our findings suggest that observed differences in CpG-content between typical-progressors and slow-progressors is not explained by differences in the mononucleotide content. Our results also highlight that the high-CpG content in HIV-1 envelope gene from slow-progressors is observed immediately after seroconversion. Thus CpG dinucleotide content of HIV-1 envelope gene is a potential virus-related factor that is linked to disease progression. The CpG dinucleotide content of HIV-1 envelope gene may help predict HIV-1 disease progression at early stages after seroconversion.


Assuntos
Composição de Bases , Fosfatos de Dinucleosídeos , Genes env , Infecções por HIV/virologia , HIV-1/genética , Códon , Progressão da Doença , Soropositividade para HIV/genética , Humanos , Prognóstico , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa