Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 161(6)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39120038

RESUMO

Understanding microscopic directional correlations in ion movements within lithium-ion battery (LIB) electrolytes is important because these correlations directly affect the ionic conductivity. Onsager transport coefficients are widely used to understand these correlations. On the other hand, the Van Hove function (VHF) is also capable of determining correlated motions. However, identifying various types of ion correlated motions in LIB electrolytes using VHF is not well explored. Here, we have conducted molecular dynamics simulations of a representative experimental LIB electrolyte system-lithium hexafluorophosphate (LiPF6)-at different concentrations in a (9:1 wt. %) mixture of ethyl methyl carbonate and fluoroethylene carbonate in order to explore the capabilities and limitations of using VHF to understand different types of ion correlations. We conclude that analysis of VHF can qualitatively describe both the positive correlation between cation-anion at different salt concentrations and the negative correlation between cation-cation and anion-anion present in high salt concentration, but it cannot foretell which correlation is dominating at any given electrolyte concentration. This type of quantitative information can be obtained only via Onsager's approach. This could be seen as a limitation of relying solely on VHF to fully understand ion correlation in electrolyte media.

2.
J Chem Phys ; 160(8)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38421071

RESUMO

The impact of successive replacement of K+ by Na+ on the megahertz-gigahertz polarization response of 0.25[fKSCN + (1 - f)NaSCN] + 0.75CH3CONH2 deep eutectic solvents (DESs) was explored via temperature-dependent (303 ≤ T/K ≤ 343) dielectric relaxation (DR) measurements and computer simulations. Both the DR measurements (0.2 ≤ ν/GHz ≤ 50) and the simulations revealed multi-Debye relaxations accompanied by a decrease in the solution static dielectric constant (ɛs) upon the replacement of K+ by Na+. Accurate measurements of the DR response of DESs below 100 MHz were limited by the well-known one-over-frequency divergence for conducting solutions. This problem was tackled in simulations by removing the zero frequency contributions arising from the ion current to the total simulated DR response. The temperature-dependent measurements revealed a much stronger viscosity decoupling of DR times for Na+-containing DES than for the corresponding K+ system. The differential scanning calorimetry measurements indicated a higher glass transition temperature for Na+-DES (∼220 K) than K+-DES (∼200 K), implying more fragility and cooperativity for the former (Na+-DES) than the latter. The computer simulations revealed a gradual decrease in the average number of H bonds (⟨nHB⟩) per acetamide molecule and increased frustrations in the average orientational order upon the replacement of K+ by Na+. Both the measured and simulated ɛs values were found to decrease linearly with ⟨nHB⟩. Decompositions of the simulated DR spectra revealed that the cation-dependent cross interaction (dipole-ion) term contributes negligibly to ɛs and appears in the terahertz regime. Finally, the simulated collective single-particle reorientational relaxations and the structural H-bond fluctuation dynamics revealed the microscopic origin of the cation identity dependence shown by the measured DR relaxation times.

3.
J Chem Phys ; 158(17)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37139998

RESUMO

Frequency-dependent dielectric relaxation in three deep eutectic solvents (DESs), (acetamide+LiClO4/NO3/Br), was investigated in the temperature range, 329 ≤ T/K ≤ 358, via molecular dynamics simulations. Subsequently, decomposition of the real and the imaginary components of the simulated dielectric spectra was carried out to separate the rotational (dipole-dipole), translational (ion-ion), and ro-translational (dipole-ion) contributions. The dipolar contribution, as expected, was found to dominate all the frequency-dependent dielectric spectra over the entire frequency regime, while the other two components together made tiny contributions only. The translational (ion-ion) and the cross ro-translational contributions appeared in the THz regime in contrast to the viscosity-dependent dipolar relaxations that dominated the MHz-GHz frequency window. Our simulations predicted, in agreement with experiments, anion-dependent decrement of the static dielectric constant (ɛs ∼ 20 to 30) for acetamide (ɛs ∼ 66) in these ionic DESs. Simulated dipole-correlations (Kirkwood g factor) indicated significant orientational frustrations. The frustrated orientational structure was found to be associated with the anion-dependent damage of the acetamide H-bond network. Single dipole reorientation time distributions suggested slowed down acetamide rotations but did not indicate presence of any "rotationally frozen" molecule. The dielectric decrement is, therefore, largely static in origin. This provides a new insight into the ion dependence of the dielectric behavior of these ionic DESs. A good agreement between the simulated and the experimental timescales was also noticed.

4.
Phys Chem Chem Phys ; 24(36): 22250-22262, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36098073

RESUMO

Targeting amyloidosis requires high-resolution insight into the underlying mechanisms of amyloid aggregation. The sequence-specific intrinsic properties of a peptide or protein largely govern the amyloidogenic propensity. Thus, it is essential to delineate the structural motifs that define the subsequent downstream amyloidogenic cascade of events. Additionally, it is important to understand the role played by extrinsic factors, such as temperature or sample agitation, in modulating the overall energy barrier that prompts divergent nucleation events. Consequently, these changes can affect the fibrillation kinetics, resulting in structurally and functionally distinct amyloidogenic conformers associated with disease pathogenesis. Here, we have focused on human Islet Polypeptide (hIAPP) amyloidogenesis for the full-length peptide along with its N- and C-terminal fragments, under different temperatures and sample agitation conditions. This helped us to gain a comprehensive understanding of the intrinsic role of specific functional epitopes in the primary structure of the peptide that regulates amyloidogenesis and subsequent cytotoxicity. Intriguingly, our study involving an array of biophysical experiments and ex vivo data suggests a direct influence of external changes on the C-terminal fibrillating sequence. Furthermore, the observations indicate a possible collaborative role of this segment in nucleating hIAPP amyloidogenesis in a physiological scenario, thus making it a potential target for future therapeutic interventions.


Assuntos
Amiloidose , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Amiloide/química , Proteínas Amiloidogênicas , Epitopos , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química
5.
Phys Chem Chem Phys ; 23(21): 12191-12203, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34008630

RESUMO

Molecular dynamics simulations have been performed on a highly viscous (η ∼ 255 cP) naturally abundant deep eutectic solvent (NADES) composed of glucose, urea and water in a weight ratio of 6 : 4 : 1 at 328 K. The simulated system contains 66 glucose, 111 water and 133 urea molecules. A neat system with 256 water molecules has also been simulated. In this study, the water structure and dynamics in a crowded environment have been investigated by computing inter-species radial distribution functions (RDFs), quantitative and qualitative analyses of intra-species water H-bonds, heterogeneity timescales from the anomalous mean square displacements, and two-point and four-point density-time correlation functions. The simulated structures indicate asymmetric interactions between water and glucose molecules, and considerable water-clustering. In addition, a dramatic distortion of the orientational order has been reflected. A severe decrease in the average number of water-water H-bonds and the corresponding participation of water molecules have been detected, although the water H-bond length distribution does not differ much from that for the neat system. The participation populations of water for H-bonding with itself and the other two species have been expressed by constructing a pi-chart. Only ∼16% of the total water molecules have been found to be simultaneously H-bonded with glucose and urea molecules. A qualitative picture of water clustering has been proposed through the interpretation of the observed drastic deviation of water angle distributions. Centre-of-mass translations and structural H-bond relaxations have been found to be significantly slowed down relative to those in neat water. Evidence of hop-trap movements for DES water has been found.

6.
J Chem Phys ; 153(23): 234502, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33353330

RESUMO

Heterogeneous relaxation dynamics often characterizes deep eutectic solvents. Extensive and molecular dynamics simulations have been carried out in the temperature range, 303 ≤ T/K ≤ 370, for studying the anion and temperature dependencies of heterogeneous dynamics of three different ionic acetamide deep eutectics: acetamide + LiX, X being bromide (Br-), nitrate (NO3 -), and perchlorate (ClO4 -). These systems are chosen because the fractional viscosity dependence of average relaxation rates reported by various measurements has been attributed to the heterogeneous dynamics of these systems. Simulations performed here attempt to characterize the heterogeneous relaxation dynamics in terms of correlated time and length scales and understand the solution inhomogeneity in microscopic terms. Additionally, simulation studies for pure molten acetamide have been performed to understand the impact of ions on motional features of acetamide in these ionic deep eutectic systems. The computed radial distribution functions suggest microheterogeneous solution structure and dependence upon anion identity and temperature. A significant plateau in the simulated time dependent mean squared displacements indicates pronounced cage-rattling and inhomogeneity in relaxation dynamics. Simulated diffusion coefficients for acetamide and ions show decoupling from the simulated viscosities of these deep eutectics. Calculated two- and four-point correlation functions reveal the presence of dynamic heterogeneity even at ∼180 K above the measured thermodynamic glass transition temperature (Tg). Further analyses reveal the existence of multiple timescales that respond strongly to the rise in solution temperature. The simulated dynamic structure factor and overlap function relaxations show strong stretched exponential relaxations. The simulation results support the experimental observation that the bromide system is the most dynamically heterogeneous among these three systems. Correlated length scales show much weaker anion and temperature dependencies with an estimated length of ∼1 nm, suggesting formation of clusters at the local level as the origin for the micro-heterogeneous nature of these ionic deep eutectics.

7.
J Chem Phys ; 151(18): 184901, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31731866

RESUMO

Here, we report the concentration (0 ≤ wt. % ≤ 30) and temperature (293 ≤ T/K ≤ 318) dependent structural and dynamical changes in an aqueous solution of a triblock copolymer (Pluronic P123) using dielectric relaxation spectroscopy (DRS), covering a frequency regime, 0.2 ≤ ν/GHz ≤ 50. Remarkable existence of slow water molecules, ∼2 times slower than bulk type water, along with bulk-like water molecules has been detected in the present DR measurements. Differential scanning calorimetric measurements support this DR observation. The signature of the sol-gel phase transition (∼15.0 wt. %, 293 K) and temperature induced extensive dehydration (>60%) for P123 molecules, which are the other notable findings of the present work. Moreover, the rate of dehydration with temperature has been found to depend on the phase of the medium. However, dehydration follows a nonlinear pattern in both sol and gel phases. A subnanosecond (∼90 ps) component, possibly originating from the hydrogen bond relaxation dynamics of the terminal C-O-H of polymer chains, has also been observed.

8.
J Chem Phys ; 151(15): 154902, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640385

RESUMO

The impact of atom substitution on the glycoside linkage bridging the head and the tail parts in a nonionic surfactant molecule on aqueous dynamics of the resultant micellar solutions has been explored, employing time-resolved fluorescence and dielectric relaxation (DR) measurements. We have utilized n-octyl-ß-D-glucopyranoside (OG) and n-octyl-ß-D-thioglucopyranoside (OTG) as nonionic surfactants where the oxygen atom in the glucopyranoside unit is substituted by a sulfur atom. The substitution impact is immediately reflected in the dynamic light scattering measurements of aqueous solutions where the estimated size of the OTG micelles is found to be approximately four times larger than the OG micelles. Steady state spectral features obtained by using a fluorescent probe solute, coumarin 153 (C153), in these micellar solutions are quite similar and indicate locations of the solute at the micelle/water interface for both the surfactants. Interestingly, significant differences in the rotational and solvation dynamics of C153 in these two micellar solutions have been registered. The corresponding DR measurements do not indicate any signature of relaxation typical of bound water. The absence of bound water is further supported by the differential scanning calorimetric measurements. However, the typical slow solvation time scale for aqueous micellar solutions has been observed for these surfactants. Fluctuations in the solute-interface interaction energy due to the solute motion has been argued to be the origin for this slow solvation component as DR measurements do not indicate the presence of qualitatively similar relaxation time scale in the medium.

9.
J Chem Phys ; 148(19): 193839, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-30307176

RESUMO

Reorientational dynamics of the constituent ions in a room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), are explored via molecular dynamics simulations, and several features of orientation dynamics are summarized. The anion, [PF6]-, not only exhibits a higher propensity to orientation jumps than the cation, [BMIM]+ but also accesses a wider jump angle distribution and larger peak-angle. Jump and waiting time distributions for both the ions depict power-law dependences, suggesting temporally heterogeneous dynamics for the medium. This heterogeneity feature is further highlighted by the finding that the simulated first rank (ℓ = 1) and second rank (ℓ = 2) average reorientational correlation times reflect a severe break-down of Debye's ℓ(ℓ + 1) law for orientational diffusion in an isotropic homogeneous medium. Simulated average H-bond lifetime resides between the mean orientation jump and waiting times, while the structural H-bond relaxation suggests, as in normal liquids, a pronounced presence of translational motion of the partnering ions. Average simulated jump trajectories reveal a strong rotation-translation coupling and indicate relatively larger changes in spatial and angular arrangements for the anion during an orientation jump. In fact, a closer inspection of all these results points toward more heterogeneous dynamics for [PF6]- than [BMIM]+. This is a new observation and may simply be linked to the ion-size. However, such a generalization warrants further study.

10.
J Chem Phys ; 149(12): 124501, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30278663

RESUMO

Dielectric relaxation (DR) measurements in the frequency window 0.2 ≤ ν(GHz) ≤ 50 for deep eutectic solvents (DESs) made of acetamide (CH3CONH2) and urea (NH2CONH2) with the general composition, [f CH3CONH2 + (1 - f) NH2CONH2] at f = 0.6 and 0.7, reveal three distinct relaxation time scales-τ1 ∼ 120 ps, τ2 ∼ 40 ps, and τ3 ∼ 5 ps. Qualitatively similar time scales have been observed for DR of neat molten urea, whereas the reported DR for neat molten acetamide in the same frequency window reflects two relaxation processes with no trace of ∼100 ps time scale. This slowest DR time scale (τ1) resembles closely to the long-time constant of the simulated structural H-bond relaxation (CHB(t)) involving urea pairs. Similarity in activation energies estimated from the temperature dependent DR measurements (335 ≤ T/K ≤ 363) and structural H-bond relaxations indicates that the structural H-bond relaxation overwhelmingly dominates the slowest DR relaxation in these DESs. Simulated collective reorientational correlation functions (C ℓ (t)), on the other hand, suggest that the second slower time scale (∼40 ps) derives contributions from both the single particle orientation dynamics and structural H-bond relaxation, leaving no role for hydrodynamic molecular rotations. The sub-10 ps DR time scale has been found to be connected to the fast reorientation dynamics of the component molecules (acetamide or urea). Fractional viscosity dependence for the longest DR times, τ DR ∝ η / T p , has been observed for these DESs with the fraction power p = 0.7. Subsequently, the temporal heterogeneity aspects of these media have been investigated by examining the simulated particle motion characteristics and substantiated by estimating the dynamically correlated time scales and length-scales through simulations of four-point susceptibilities and density correlations. These estimated dynamical time scales and length-scales assist in explaining the different inferences regarding solution heterogeneity drawn from different measurements on these DESs.

11.
J Chem Phys ; 144(10): 104505, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26979695

RESUMO

A semi-molecular theory is developed here for studying dielectric relaxation (DR) in binary mixtures of ionic liquids (ILs) with common dipolar solvents. Effects of ion translation on DR time scale, and those of ion rotation on conductivity relaxation time scale are explored. Two different models for the theoretical calculations have been considered: (i) separate medium approach, where molecularities of both the IL and dipolar solvent molecules are retained, and (ii) effective medium approach, where the added dipolar solvent molecules are assumed to combine with the dipolar ions of the IL, producing a fictitious effective medium characterized via effective dipole moment, density, and diameter. Semi-molecular expressions for the diffusive DR times have been derived which incorporates the effects of wavenumber dependent orientational static correlations, ion dynamic structure factors, and ion translation. Subsequently, the theory has been applied to the binary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) with water (H2O), and acetonitrile (CH3CN) for which experimental DR data are available. On comparison, predicted DR time scales show close agreement with the measured DR times at low IL mole fractions (x(IL)). At higher IL concentrations (x(IL) > 0.05), the theory over-estimates the relaxation times and increasingly deviates from the measurements with x(IL), deviation being the maximum for the neat IL by almost two orders of magnitude. The theory predicts negligible contributions to this deviation from the x(IL) dependent collective orientational static correlations. The drastic difference between DR time scales for IL/solvent mixtures from theory and experiments arises primarily due to the use of the actual molecular volume (V(mol)(dip)) for the rotating dipolar moiety in the present theory and suggests that only a fraction of V(mol)(dip) is involved at high x(IL). Expectedly, nice agreement between theory and experiments appears when experimental estimates for the effective rotational volume (V(eff)(dip)) are used as inputs. The fraction, V(eff)(dip)/V(mol)(dip), sharply decreases from ∼1 at pure dipolar solvent to ∼0.01 at neat IL, reflecting a dramatic crossover from viscosity-coupled hydrodynamic angular diffusion at low IL mole fractions to orientational relaxation predominantly via large angle jumps at high x(IL). Similar results are obtained on applying the present theory to the aqueous solution of an electrolyte guanidinium chloride (GdmCl) having a permanent dipole moment associated with the cation, Gdm(+).

12.
J Chem Phys ; 145(8): 084504, 2016 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-27586932

RESUMO

The paper reports a detailed simulation study on collective reorientational relaxation, cooperative hydrogen bond (H-bond) fluctuations, and their connections to dielectric relaxation (DR) in deep eutectic solvents made of acetamide and three uni-univalent electrolytes, lithium nitrate (LiNO3), lithium bromide (LiBr), and lithium perchlorate (LiClO4). Because cooperative H-bond fluctuations and ion migration complicate the straightforward interpretation of measured DR timescales in terms of molecular dipolar rotations for these conducting media which support extensive intra- and inter-species H-bonding, one needs to separate out the individual components from the overall relaxation for examining the microscopic origin of various timescales. The present study does so and finds that reorientation of ion-complexed acetamide molecules generates relaxation timescales that are in sub-nanosecond to nanosecond range. This explains in molecular terms the nanosecond timescales reported by recent giga-Hertz DR measurements. Interestingly, the simulated survival timescale for the acetamide-Li(+) complex has been found to be a few tens of nanosecond, suggesting such a cation-complexed species may be responsible for a similar timescale reported by mega-Hertz DR measurements of acetamide/potassium thiocyanate deep eutectics near room temperature. The issue of collective versus single particle relaxation is discussed, and jump waiting time distributions are determined. Dependence on anion-identity in each of the cases has been examined. In short, the present study demonstrates that assumption of nano-sized domain formation is not required for explaining the DR detected nanosecond and longer timescales in these media.

13.
J Chem Phys ; 144(12): 124506, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-27036460

RESUMO

We have performed steady state UV-visible absorption and time-resolved fluorescence measurements and computer simulations to explore the cosolvent mole fraction induced changes in structural and dynamical properties of water/dioxane (Diox) and water/tetrahydrofuran (THF) binary mixtures. Diox is a quadrupolar solvent whereas THF is a dipolar one although both are cyclic molecules and represent cycloethers. The focus here is on whether these cycloethers can induce stiffening and transition of water H-bond network structure and, if they do, whether such structural modification differentiates the chemical nature (dipolar or quadrupolar) of the cosolvent molecules. Composition dependent measured fluorescence lifetimes and rotation times of a dissolved dipolar solute (Coumarin 153, C153) suggest cycloether mole-fraction (X(THF)/Diox) induced structural transition for both of these aqueous binary mixtures in the 0.1 ≤ X(THF)/Diox ≤ 0.2 regime with no specific dependence on the chemical nature. Interestingly, absorption measurements reveal stiffening of water H-bond structure in the presence of both the cycloethers at a nearly equal mole-fraction, X(THF)/Diox ∼ 0.05. Measurements near the critical solution temperature or concentration indicate no role for the solution criticality on the anomalous structural changes. Evidences for cycloether aggregation at very dilute concentrations have been found. Simulated radial distribution functions reflect abrupt changes in respective peak heights at those mixture compositions around which fluorescence measurements revealed structural transition. Simulated water coordination numbers (for a dissolved C153) and number of H-bonds also exhibit minima around these cosolvent concentrations. In addition, several dynamic heterogeneity parameters have been simulated for both the mixtures to explore the effects of structural transition and chemical nature of cosolvent on heterogeneous dynamics of these systems. Simulated four-point dynamic susceptibility suggests formation of clusters inducing local heterogeneity in the solution structure.

14.
J Chem Phys ; 142(20): 204501, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-26026452

RESUMO

Micro-heterogeneity in aqueous solutions of 2-butoxyethanol (BE), a system with closed loop miscibility gap, has been explored via absorption and time-resolved fluorescence measurements of a dissolved dipolar solute, coumarin 153 (C153), in the water-rich region at various BE mole fractions (0 ≤ XBE ≤ 0.25) in the temperature range, 278 ≤ T/K ≤ 320. Evidences for both alcohol-induced H-bond strengthening and subsequent structural transition of H-bond network have been observed. Analyses of steady state and time-resolved spectroscopic data for these aqueous mixtures and comparisons with the results for aqueous solutions of ethanol and tertiary butanol indicate that alcohol aggregation in BE/water mixtures is driven by hydrophobic interaction with no or insignificant role for criticality-driven concentration fluctuations preceding phase separation. Excitation energy dependence of fluorescence emission of C153 confirms formation of aggregated structures at very low BE mole fractions. No asymptotic critical power law dependence for relaxation rates of the type, k ∝ (|T - Tc|/Tc)(γ), with γ denoting universal critical constant, has been observed for both solute's rotational relaxation and population relaxation rates in these mixtures upon either approaching to critical concentration or critical temperature. Estimated activation energies for rotational relaxation rate of C153 and solution viscosity have been found to follow each other with no abrupt changes in either of them at any mixture composition. In addition, measured C153 rotation times at various compositions and temperatures reflect near-hydrodynamic viscosity coupling through the dependence,〈τr〉∝ (η/T)(p), with p = 0.8-1.0, suggesting solute's orientational relaxation dynamics being, on an average, temporally homogeneous.

15.
J Chem Phys ; 142(3): 034505, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25612718

RESUMO

Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH3CONH2) and urea (NH2CONH2) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH3CONH2 + (1 - f)NH2CONH2] have been studied in a temperature range of 328-353 K which is ∼120-145 K above the measured glass transition temperatures (∼207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (∼70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α2) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.

16.
J Chem Phys ; 142(18): 184504, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25978897

RESUMO

A detailed investigation on the molecular dynamics of ionic deep eutectic solvents (acetamide + lithium nitrate/sodium thiocyanate) is reported. The study was carried out employing dielectric relaxation spectroscopy covering seven decades in frequency (10(-1)-10(6) Hz) and in a wide temperature range from 373 K down to 173 K, accessing the dynamic observables both in liquid and glassy state. The dielectric response of the ionic system has been presented in the dynamic window of modulus formalism to understand the conductivity relaxation and its possible connection to the origin of localized motion. Two secondary relaxation processes appear below glass transition temperature. Our findings provide suitable interpretation on the nature of secondary Johari-Goldstein process describing the ion translation and orientation of dipoles in a combined approach using Ngai's coupling model. A nearly constant loss feature is witnessed at shorter times/lower temperatures. We also discuss the ac conductivity scaling behavior using Summerfield approach and random free energy barrier model which establish the time-temperature superposition principle. These experimental observations have fundamental importance on theoretical elucidation of the conductivity relaxation and glass transition phenomena in molten ionic conductors.

17.
J Chem Phys ; 140(1): 014504, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24410230

RESUMO

A semi-molecular theory for studying the dielectric relaxation (DR) dynamics in ionic liquids (ILs) has been developed here. The theory predicts triphasic relaxation of the generalized orientational correlation function in the collective limit. Relaxation process involves contributions from dipole-dipole, ion-dipole, and ion-ion interactions. While the dipole-dipole and ion-ion interactions dictate the predicted three relaxation time constants, the relaxation amplitudes are determined by dipole-dipole, ion-dipole, and ion-ion interactions. The ion-ion interaction produces a time constant in the range of 5-1000µs which parallels with the conductivity dominated dielectric loss peak observed in broadband dielectric measurements of ILs. Analytical expressions for two time constants originating from dipolar interactions in ILs match exactly with those derived earlier for dipolar solvents. The theory explores relations among single particle rotational time, collective rotational time, and DR time for ILs. Use of molecular volume for the rotating dipolar ion of a given IL leads to a predicted DR time constant much larger than the slowest DR time constant measured in experiments. In contrast, similar consideration for dipolar liquids produces semi-quantitative agreement between theory and experiments. This difference between ILs and common dipolar solvents has been understood in terms of extremely low effective rotational volume of dipolar ion, argued to arise from medium heterogeneity. Effective rotational volumes predicted by the present theory for ILs are in general agreement with estimates from experimental DR data and simulation results. Calculations at higher temperatures predict faster relaxation time constants reducing the difference between theory and experiments.

18.
J Chem Phys ; 141(10): 104501, 2014 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-25217931

RESUMO

This paper explores an interconnection between timescales of dynamic heterogeneity (DH) in a neat ionic liquid (IL), 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]), and slow solvation of a dipolar solute, coumarin 153 (C153) in it at 298 K and 450 K. Molecular dynamics simulations employing realistic interaction potentials for both the IL and the solute have been performed. DH timescales have been obtained from non-Gaussian and new non-Gaussian (NNG) parameters, and four-point dynamic susceptibilities (χ4(k, t)) and overlap functions (Q(t)). Simulated ion displacement distributions exhibit pronounced deviations from Gaussian behaviour and develop bimodality in the timescale of structural relaxation, τ(α), indicating ion hopping at long-time. DH timescales from χ4(k, t) and Q(t) have been found to be longer than τ(NNG) although τ(α) ≈ τ(NNG). Maximum cation jump length detected here corresponds to ~50% of the ion diameter and agrees well with experimental estimates. DH length-scale (ξ) extracted from χ4(k, t) spans about an ion diameter and shows correct temperature dependence. Our simulated solvation response functions for C153 in [Bmim][PF6] are tri-exponentials with fast time constants in good agreement with the available experimental and/or simulation data. The slow solvation rate at 298 K, however, is ~4 times slower than that found in experiments, although the same at 450 K corroborates well with simulation data at similar temperature from different sources. Importantly, our simulated slow solvation rates at these temperatures strongly correlate to longer DH timescales, suggesting DH as a source for the slow solvation at long-time in IL. Moreover, ion jumps at long-time suggests viscosity decoupling of long-time solvation rate in ILs.

19.
J Chem Phys ; 141(16): 164502, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25362320

RESUMO

A semi-molecular theory for studying composition dependent Stokes shift dynamics of a dipolar solute in binary mixtures of (non-dipolar ionic liquid + common dipolar solvent) is developed here. The theory provides microscopic expressions for solvation response functions in terms of static and dynamic structure factors of the mixture components and solute-solvent static correlations. In addition, the theory provides a framework for examining the interrelationship between the time dependent solvation response in and frequency dependent dielectric relaxation of a binary mixture containing electrolyte. Subsequently, the theory has been applied to predict ionic liquid (IL) mole fraction dependent dynamic Stokes shift magnitude and solvation energy relaxation for a dipolar solute, C153, in binary mixtures of an ionic liquid, trihexyltetradecylphosphonium chloride ([P(14,666)][Cl]) with a common dipolar solvent, methanol (MeOH). In the absence of suitable experimental data, necessary input parameters have been obtained from approximate methods. Dynamic shifts calculated for these mixtures exhibit a linear increase with IL mole fraction for the most part of the mixture composition, stressing the importance of solute-IL dipole-ion interaction. Average solvation rates, on the other hand, show a nonlinear IL mole fraction dependence which is qualitatively similar to what has been observed for such binary mixtures with imidazolium (dipolar) ILs. These predictions should be re-examined in suitable experiments.

20.
J Chem Phys ; 141(13): 134506, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25296820

RESUMO

In this study, we have investigated the ion concentration dependent collective dynamics in two series of deep eutectic solvent (DES) systems by femtosecond Raman-induced Kerr effect spectroscopy, as well as some physical properties, e.g., shear viscosity (η), density (ρ), and surface tension (γ). The DES systems studied here are [0.75CH3CONH2 + 0.25{f KSCN + (1 - f )NaSCN}] and [0.78CH3CONH2 + 0.22{f LiBr + (1 - f )LiNO3}] with f = 0, 0.2, 0.4, 0.6, 0.8, and 1.0. γ of these DES systems shows near insensitivity to f, while ρ shows a moderate dependence on f. Interestingly, η exhibits a strong dependence on f. In the low-frequency Kerr spectra, obtained via the Fourier transform of the collected Kerr transients, a characteristic band at ∼70 cm(-1) is clear in [0.78CH3CONH2 + 0.22{f LiBr + (1 - f )LiNO3}] DES especially at the larger f. The band is attributed to the intermolecular hydrogen bond of acetamide. Because of less depolarized Raman activities of intermolecular/interionic vibrational motions, which are mostly translational (collision-induced or interaction-induced) motions, of spherical ions, the intermolecular hydrogen-bonding band is clearly observed. In contrast, the intermolecular hydrogen-bonding band is buried in the other intermolecular/interionic vibrational motions, which includes translational and reorientational (librational) motions and their cross-terms, in [0.75CH3CONH2 + 0.25{f KSCN + (1 - f )NaSCN}] system. The first moment (M1) of the intermolecular/interionic vibrational band in these DES systems is much higher than that in typical neutral molecular liquids and shows a weak but contrasting dependence on the bulk parameter √γ/ρ. The time constants for picosecond overdamped Kerr transients in both the DES systems, which are obtained on the basis of the analysis fitted by a triexponential function, are rather insensitive to f for both the DES systems, but all the three time constants (fast: ∼1-3 ps; intermediate: ∼7-20 ps; and slow: ∼100 ps) are different between the [0.78CH3CONH2 + 0.22{f LiBr + (1 - f )LiNO3}] and [0.75CH3CONH2 + 0.25{f KSCN + (1 - f )NaSCN}] systems. These results indicate that the intermolecular/interionic interactions in DES systems is strongly influenced by the ionic species present in these DES systems.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa