Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 403(1): 112567, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33812866

RESUMO

We chose to evaluate Hypoxanthine Guanine Phosphoribosyltransferase (HPRT) as a possible biomarker for prostate cancer due to its involvement in nucleotide synthesis and cell cycle progression. We utilized two prostate cancer cell lines (PC3 and DU145) along with patient tissue and knockdowns to evaluate overall HPRT expression. The surface localization of HPRT was determined utilizing flow cytometry, confocal microscopy, and scanning electron microscopy followed by ADCC to evaluate targeting potential. We found significant upregulation of HPRT within malignant samples with approximately 47% of patients had elevated levels of HPRT compared to normal controls. We also observed a significant association between HPRT and the plasma membrane of DU145 cells (p = 0.0004), but found no presence on PC3 cells (p = 0.14). This was confirmed with scanning electron microscopy and confocal microscopy. ADCC experiments were performed to determine whether HPRT could be used as a target antigen for selective cell-mediated killing. We found that DU145 cells treated with HPRT antibodies had a significantly higher incidence of cell death than both isotype treated samples and PC3 cells treated with the same concentrations of HPRT antibody. Finally, we determined that p53 had a significant impact on HPRT expression both internally and on the surface of cancer cells. These results suggest HPRT as a possible biomarker target for the treatment of patients with prostate cancer.


Assuntos
Divisão Celular/fisiologia , Citotoxicidade Imunológica/imunologia , Hipoxantina Fosforribosiltransferase/metabolismo , Neoplasias da Próstata/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/imunologia , Masculino , Neoplasias da Próstata/imunologia , Proteína Supressora de Tumor p53/metabolismo
2.
Cancer Cell Int ; 20: 127, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32317865

RESUMO

BACKGROUND: Thymidine kinase 1 (TK1) is a pyrimidine salvage pathway enzyme that is up-regulated in malignant tissues and elevated in the serum of cancer patients. While TK1 has been well established as a tumor biomarker, little has been done to explore its potential as a tumor target. Recently, we reported the membrane expression of TK1 on malignant cells, but not on normal cells. This study explores the possible use of monoclonal antibodies for the targeting of membrane associated TK1 in lung, breast, colon and prostate cancer cells. METHODS: We generated and evaluated a panel of monoclonal antibodies against six different epitopes exposed in the tetrameric form of TK1. Antibodies were developed with hybridoma technology and validated with Western blot, siRNA TK1 knockdown, enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The therapeutic potential of the antibodies was evaluated in vitro in antibody-dependent cell-mediated-cytotoxicity (ADCC) experiments. RESULTS: Binding of the antibodies to TK1 was confirmed by Western blot in purified recombinant protein, cancer serum, and cell lysate. After a TK1 knockdown was performed, a reduction of TK1 expression was observed with five antibodies. Using indirect ELISA, we identified 3B2E11, 9C10, 7H2, 3B4, 8G2 among the most sensitive antibodies (LOD = 10.73-66.9 pg/ml). Surface expression of TK1 on the membrane of various cancer cell lines was analyzed with flow cytometry. Antibodies 8G2, 3B4, 7HD and 5F7G11 detected TK1 on the membrane of various cancer cell lines, including lung, prostate, colon and breast. No significant binding was detected on normal lymphocytes. Increased cytolysis of lung (~ 70%. p = 0.0001), breast (~ 70%, p = 0.0461) and colon (~ 50% p = 0.0216) cancer cells by effector cells was observed when anti-TK1 antibodies were added during ADCC experiments. CONCLUSIONS: The antibodies developed showed potential to be used to detect and target TK1 on the membrane of various tumor cells. The targeting of TK1 in malignant cells using monoclonal antibodies may be a feasible approach for the elimination of high TK1 expressing tumor cells.

3.
Reprod Biol Endocrinol ; 17(1): 81, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31647034

RESUMO

BACKGROUND: Gestational diabetes mellitus (GDM) is associated with important factors that influence fetal development. Sphingolipids are known to be associated with the development of diabetes. Our objective was to examine ceramide, a key sphingolipid, hyperosmolarity, and apoptosis in placentas from GDM patients treated with insulin or diet. METHODS: Ceramide levels were assessed in placental tissues using immunohistochemistry. Immunoblot was performed to quantify serine palmitoyltransferase (SPT), the rate-limiting enzyme in ceramide biosynthesis, NFAT5, SMIT, AR, caspase 3 and the X-linked inhibitor of apoptosis. Trophoblast cells were treated with insulin or ceramide and assessments for mitochondrial respiration, caspase 3 and XIAP were also performed. RESULTS: Immunohistochemistry showed increased ceramides in the placental villous trophoblasts of the insulin-treated GDM patients. Nuclear SPT was upregulated only in the insulin-treated GDM placenta when compared to controls. Nuclear NFAT5 was also increased in the GDM placenta. Active caspase 3 was elevated in placentas from both insulin- and diet-treated GDM patients. Mitochondrial respiration was decreased in trophoblasts treated with ceramide. Active caspase was not changed while XIAP protein was increased in trophoblasts treated with ceramide. CONCLUSIONS: Our findings confirm the presence of ceramide in the human placenta of control and GDM patients. Furthermore, we conclude that ceramide is increased in the placental trophoblast during insulin treatment and that its upregulation correlates with elevated NFAT5, SMIT, increased apoptosis and decreased trophoblast mitochondrial respiration.


Assuntos
Ceramidas/metabolismo , Diabetes Gestacional/metabolismo , Mitocôndrias/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo , Adulto , Apoptose/efeitos dos fármacos , Ceramidas/farmacologia , Diabetes Gestacional/tratamento farmacológico , Dieta , Feminino , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Gravidez , Serina C-Palmitoiltransferase/metabolismo , Trofoblastos/efeitos dos fármacos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
4.
PLoS One ; 18(11): e0293128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033034

RESUMO

Breast cancer is the most common cancer diagnosis worldwide accounting for 1 out of every 8 cancer diagnoses. The elevated expression of Thymidine Kinase 1 (TK1) is associated with more aggressive tumor grades, including breast cancer. Recent studies indicate that TK1 may be involved in cancer pathogenesis; however, its direct involvement in breast cancer has not been identified. Here, we evaluate potential pathogenic effects of elevated TK1 expression by comparing HCC 1806 to HCC 1806 TK1-knockdown cancer cells (L133). Transcriptomic profiles of HCC 1806 and L133 cells showed cell cycle progression, apoptosis, and invasion as potential pathogenic pathways affected by TK1 expression. Subsequent in-vitro studies confirmed differences between HCC 1806 and L133 cells in cell cycle phase progression, cell survival, and cell migration. Expression comparison of several factors involved in these pathogenic pathways between HCC 1806 and L133 cells identified p21 and AKT3 transcripts were significantly affected by TK1 expression. Creation of a protein-protein interaction map of TK1 and the pathogenic factors we evaluated predict that the majority of factors evaluated either directly or indirectly interact with TK1. Our findings argue that TK1 elevation directly increases HCC 1806 cell pathogenicity and is likely occurring by p21- and AKT3-mediated mechanisms to promote cell cycle arrest, cellular migration, and cellular survival.


Assuntos
Neoplasias da Mama , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Sobrevivência Celular/genética , Virulência , Divisão Celular , Timidina Quinase/genética , Timidina Quinase/metabolismo , Movimento Celular/genética
5.
Cell Biosci ; 10(1): 138, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33292474

RESUMO

Proliferation markers, such as proliferating cell nuclear antigen (PCNA), Ki-67, and thymidine kinase 1 (TK1), have potential as diagnostic tools and as prognostic factors in assessing cancer treatment and disease progression. TK1 is involved in cellular proliferation through the recovery of the nucleotide thymidine in the DNA salvage pathway. TK1 upregulation has been found to be an early event in cancer development. In addition, serum levels of TK1 have been shown to be tied to cancer stage, so that higher levels of TK1 indicate a more serious prognosis. As a result of these findings and others, TK1 is not only a potentially viable biomarker for cancer recurrence, treatment monitoring, and survival, but is potentially more advantageous than current biomarkers. Compared to other proliferation markers, TK1 levels during S phase more accurately determine the rate of DNA synthesis in actively dividing tumors. Several reviews of TK1 elaborate on various assays that have been developed to measure levels in the serum of cancer patients in clinical settings. In this review, we include a brief history of important TK1 discoveries and findings, a comprehensive overview of TK1 regulation at DNA to protein levels, and recent findings that indicate TK1's potential role in cancer pathogenesis and its growing potential as a tumor biomarker and therapeutic target.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa