Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 14(50): e1803274, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30353702

RESUMO

Light responsive materials that are able to change their shape are becoming increasingly important. However, preconfigurable bistable or even multi-stable visible light responsive coatings have not been reported yet. Such materials will require less energy to actuate and will have a longer lifetime. Here, it is shown that fluorinated azobenzenes can be used to create rewritable and pre-configurable responsive surfaces that show multi-stable topographies. These surface structures can be formed and removed by using low intensity green and blue light, respectively. Multistable preconfigured surface topographies can also be created in the absence of a mask. The method allows for full control over the surface structures as the topographical changes are directly linked to the molecular isomerization processes. Preliminary studies reveal that these light responsive materials are suitable as adaptive biological surfaces.

2.
Macromol Rapid Commun ; 39(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29194838

RESUMO

Hydrogels are soft materials that have found multiple applications in biomedicine and represent a good platform for the introduction of molecular switches and synthetic machines into macromolecular networks. Tuning their mechanical properties reversibly with light is appealing for a variety of advanced applications and has been demonstrated in the past; however, their activation typically requires the use of UV light, which displays several drawbacks related to its damaging character and limited penetration in tissues and materials. This study circumvents this limitation by introducing all-visible ortho-fluoroazobenzene switches into a hydrophilic network, which, as a result, can be activated with green or blue light. Photoisomerization of the photochromic moieties is accompanied by a reversible tuning of the elastic modulus. The translation of molecular isomerization within the network into macroscopic modulation of its mechanical properties is attributed to different aggregation tendencies of the E and Z isomers of the azobenzene derivatives.


Assuntos
Compostos Azo/química , Hidrogéis/química , Luz , Elasticidade , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Estereoisomerismo
3.
J Am Chem Soc ; 139(1): 335-341, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27997152

RESUMO

A variety of azobenzenes were synthesized to study the behavior of their E and Z isomers upon electrochemical reduction. Our results show that the radical anion of the Z isomer is able to rapidly isomerize to the corresponding E configured counterpart with a dramatically enhanced rate as compared to the neutral species. Due to a subsequent electron transfer from the formed E radical anion to the neutral Z starting material the overall transformation is catalytic in electrons; i.e., a substoichiometric amount of reduced species can isomerize the entire mixture. This pathway greatly increases the efficiency of (photo)switching while also allowing one to reach photostationary state compositions that are not restricted to the spectral separation of the individual azobenzene isomers and their quantum yields. In addition, activating this radical isomerization pathway with photoelectron transfer agents allows us to override the intrinsic properties of an azobenzene species by triggering the reverse isomerization direction (Z → E) by the same wavelength of light, which normally triggers E → Z isomerization. The behavior we report appears to be general, implying that the metastable isomer of a photoswitch can be isomerized to the more stable one catalytically upon reduction, permitting the optimization of azobenzene switching in new as well as indirect ways.

4.
Chemistry ; 23(56): 14090-14095, 2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-28881057

RESUMO

To improve the sensitized Z→E photoisomerization of azobenzenes, and circumvent the threshold concentration necessary for the bimolecular photoinduced electron transfer reaction to generate the rapidly isomerizing Z-azobenzene radical anion, an IrIII complex with a covalently tethered azobenzene fragment was synthesized. Selective irradiation of the 1 MLCT band of the IrIII complex induced an efficiently sensitized photoswitching of the dyad over a wide concentration range and even at high dilution.

5.
Chemistry ; 23(23): 5434-5438, 2017 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-28370503

RESUMO

Stimuli-responsive molecules change their properties when exposed to external signals, such as light, and enable the preparation of smart materials. UV light, which often destroys organic materials, is typically required for activating the desired response of photoswitchable compounds, significantly limiting the potential applications of light-operated smart materials. Herein, we present the first metal-organic framework (MOF), which enables reversible modulation of key properties upon irradiation with visible light only. The fluorinated azobenzene side groups in the MOF structure can be reversibly switched between the trans and cis state by green and violet light, avoiding UV light. It was demonstrated that the uptake of guest molecules by these MOF films can be switched in a fully remote-controlled way. The membrane separation of hydrogen/hydrocarbon mixtures was investigated. The light-induced changes of the MOF pore size result in the switching of the permeation and of the selection factor.

6.
Chemistry ; 22(2): 746-52, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26617393

RESUMO

The ability to control the interplay of materials with low-energy photons is important as visible light offers several appealing features compared to ultraviolet radiation (less damaging, more selective, predominant in the solar spectrum, possibility to increase the penetration depth). Two different metal-organic frameworks (MOFs) were synthesized from the same linker bearing all-visible ortho-fluoroazobenzene photoswitches as pendant groups. The MOFs exhibit different architectures that strongly influence the ability of the azobenzenes to isomerize inside the voids. The framework built with Al-based nodes has congested 1D channels that preclude efficient isomerization. As a result, local light-heat conversion can be used to alter the CO2 adsorption capacity of the material on exposure to green light. The second framework, built with Zr nodes, provides enough room for the photoswitches to isomerize, which leads to a unique bistable photochromic MOF that readily responds to blue and green light. The superiority of green over UV irradiation was additionally demonstrated by reflectance spectroscopy and analysis of digested samples. This material offers promising perspectives for liquid-phase applications such as light-controlled catalysis and adsorptive separation.

7.
Chemphyschem ; 17(23): 3900-3906, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27598725

RESUMO

In the framework of density functional theory, the adsorption of the halogenated polycyclic aromatic hydrocarbon 2,11-diiodohexabenzocoronene (HBC-I2 ) on the SiC(0001) 3×3 surface has been investigated. Nondissociative and dissociative molecular adsorption is considered, and simulated scanning tunneling microscopy (STM) images are compared with the corresponding experimental observations. Calculations show that dissociative adsorption is favorable and reveal the crucial importance of the extended flat carbon core on molecule-surface interactions in dissociative adsorption; the iodine atom-surface interaction is of minor importance. Indeed, removing iodine atoms does not significantly affect the STM images of the central part of the molecule. This study shows that the dissociation of large halogenated polycyclic aromatic hydrocarbon molecules can occur on the SiC surface. This opens up interesting perspectives in the chemical reactivity and functionalization of wide band gap semiconductors.

8.
Biomacromolecules ; 17(6): 1959-68, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27030485

RESUMO

Light-induced DNA compaction as part of nonviral gene delivery was investigated intensively in the past years, although the bridging between the artificial light switchable compacting agents and biocompatible light insensitive compacting agents was not achieved until now. In this paper, we report on light-induced compaction and decompaction of DNA molecules in the presence of a new type of agent, a multivalent cationic peptidomimetic molecule containing a photosensitive Azo-group as a branch (Azo-PM). Azo-PM is synthesized using a solid-phase procedure during which an azobenzene unit is attached as a side chain to an oligo(amidoamine) backbone. We show that within a certain range of concentrations and under illumination with light of appropriate wavelengths, these cationic molecules induce reversible DNA compaction/decompaction by photoisomerization of the incorporated azobenzene unit between a hydrophobic trans- and a hydrophilic cis-conformation, as characterized by dynamic light scattering and AFM measurements. In contrast to other molecular species used for invasive DNA compaction, such as widely used azobenzene containing cationic surfactant (Azo-TAB, C4-Azo-OCX-TMAB), the presented peptidomimetic agent appears to lead to different complexation/compaction mechanisms. An investigation of Azo-PM in close proximity to a DNA segment by means of a molecular dynamics simulation sustains a picture in which Azo-PM acts as a multivalent counterion, with its rather large cationic oligo(amidoamine) backbone dominating the interaction with the double helix, fine-tuned or assisted by the presence and isomerization state of the Azo-moiety. However, due to its peptidomimetic backbone, Azo-PM should be far less toxic than photosensitive surfactants and might represent a starting point for a conscious design of photoswitchable, biocompatible vectors for gene delivery.


Assuntos
Compostos Azo/química , DNA/química , Luz , Peptidomiméticos/química , Tensoativos/química , Compostos Azo/efeitos da radiação , Precipitação Química , DNA/genética , DNA/efeitos da radiação , Difusão Dinâmica da Luz , Técnicas de Transferência de Genes , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Peptidomiméticos/efeitos da radiação , Processos Fotoquímicos , Tensoativos/efeitos da radiação
9.
Angew Chem Int Ed Engl ; 54(39): 11338-49, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26096635

RESUMO

The ability to influence key properties of molecular systems by using light holds much promise for the fields of materials science and life sciences. The cornerstone of such systems is molecules that are able to reversibly photoisomerize between two states, commonly referred to as photoswitches. One serious restriction to the development of functional photodynamic systems is the necessity to trigger switching in at least one direction by UV light, which is often damaging and penetrates only partially through most media. This review provides a summary of the different conceptual strategies for addressing molecular switches in the visible and near-infrared regions of the optical spectrum. Such visible-light-activated molecular switches tremendously extend the scope of photoswitchable systems for future applications and technologies.


Assuntos
Raios Ultravioleta , Transporte de Elétrons , Transferência de Energia
10.
Chemistry ; 20(50): 16492-501, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25352421

RESUMO

Improving the photochemical properties of molecular photoswitches is crucial for the development of light-responsive systems in materials and life sciences. ortho-Fluoroazobenzenes are a new class of rationally designed photochromic azo compounds with optimized properties, such as the ability to isomerize with visible light only, high photoconversions, and unprecedented robust bistable character. Introducing σ-electron-withdrawing F atoms ortho to the NN unit leads to both an effective separation of the n→π* bands of the E and Z isomers, thus offering the possibility of using these two transitions for selectively inducing E/Z isomerizations, and greatly enhanced thermal stability of the Z isomers. Additional para-electron-withdrawing groups (EWGs) work in concert with ortho-F atoms, giving rise to enhanced separation of the n→π* transitions. A comprehensive study of the effect of substitution on the key photochemical properties of ortho-fluoroazobenzenes is reported herein. In particular, the position, number, and nature of the EWGs have been varied, and the visible light photoconversions, quantum yields of isomerization, and thermal stabilities have been measured and rationalized by DFT calculations.

11.
Beilstein J Org Chem ; 10: 1603-12, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25161717

RESUMO

The synthesis of photoswitchable glycooligomers is presented by applying solid-phase polymer synthesis and functional building blocks. The obtained glycoligands are monodisperse and present azobenzene moieties as well as sugar ligands at defined positions within the oligomeric backbone and side chains, respectively. We show that the combination of molecular precision together with the photoswitchable properties of the azobenzene unit allows for the photosensitive control of glycoligand binding to protein receptors. These stimuli-sensitive glycoligands promote the understanding of multivalent binding and will be further developed as novel biosensors.

13.
J Phys Chem A ; 117(51): 14056-64, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24308386

RESUMO

The radical anions of five bis(azobenzene) and one tris(azobenzene) compounds were studied by optical and electron paramagnetic resonance (EPR) spectroscopies in polar aprotic solvents. The radicals with planar or almost-planar bridges are charge-delocalized mixed-valence species. Localization of charge occurs only on radicals with highly twisted biphenyl bridges. The electronic coupling between the azobenzene charge-bearing units, calculated as half the energy of the intervalence band for the charge-delocalized and by the Hush equation for the charge-localized radicals, decreases with the distance and torsion angle between azobenzene units. These radicals have smaller electronic couplings between charge-bearing units than other mixed-valence organic radicals with similar bridges. However, the application of a three-stage model to the tris(azobenzene) radical anion intervalence band yields an electronic coupling between consecutive azobenzenes that is higher than in any of the bis(azobenzene) radicals studied.

14.
J Am Chem Soc ; 134(51): 20597-600, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23236950

RESUMO

Azobenzene functionalized with ortho-fluorine atoms has a lower energy of the n-orbital of the Z-isomer, resulting in a separation of the E and Z isomers' n→π* absorption bands. Introducing para-substituents allows for further tuning of the absorption spectra of o-fluoroazobenzenes. In particular, electron-withdrawing ester groups give rise to a 50 nm separation of the n→π* transitions. Green and blue light can therefore be used to induce E→Z and Z→E isomerizations, respectively. The o-fluoroazobenzene scaffold is readily synthesized and can be inserted into larger structures via its aryl termini. These new azobenzene derivatives can be switched in both ways with high photoconversions, and their Z-isomers display a remarkably long thermal half-life.

16.
Angew Chem Int Ed Engl ; 50(52): 12559-63, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22114009

RESUMO

Light can play: Irradiation causes dramatic changes in the shape of rigid-rod polymers incorporating azobenzene photochromes in the main chain. The embedded photoswitches act as hinges, which upon light-induced isomerization lead to reversible shrinking and stretching of the polymer backbone (see scheme), resembling light-orchestrated macromolecular accordions.


Assuntos
Luz , Polímeros/química , Substâncias Macromoleculares/química , Processos Fotoquímicos
17.
J Phys Chem Lett ; 10(21): 6626-6633, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31596091

RESUMO

Photonic crystals are solids with regular structures having periodicities comparable to the wavelength of light. Here, we showcase the photomodulation of the refractive index of a crystalline material and present a quasi-one-dimensional photonic crystal with remote-controllable optical properties. The photonic material is composed of layers of TiO2 and films of a nanoporous metal-organic framework (MOF) with azobenzene side groups. While the rigid MOF lattice is unaffected, the optical density is reversibly modified by the light-induced trans-cis-azobenzene isomerization. Spectroscopic ellipsometry and precise DFT calculations show the optical-density change results from the different orbital localizations of the azobenzene isomers and their tremendously different oscillator strengths. The photomodulation of the MOF refractive index controls the optical properties of the quasi-one-dimensional photonic crystal with Bragg reflexes reversibly shifted by more than 4 nm. This study may path the way to photoswitchable photonic materials applied in advanced, tunable optical components and lens coatings and in light-based information processing.

18.
Adv Sci (Weinh) ; 5(8): 1800432, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30128249

RESUMO

Biomembranes are constantly remodeled and in cells, these processes are controlled and modulated by an assortment of membrane proteins. Here, it is shown that such remodeling can also be induced by photoresponsive molecules. The morphological control of giant vesicles in the presence of a water-soluble ortho-tetrafluoroazobenzene photoswitch (F-azo) is demonstrated and it is shown that the shape transformations are based on an increase in membrane area and generation of spontaneous curvature. The vesicles exhibit budding and the buds can be retracted by using light of a different wavelength. In the presence of F-azo, the membrane area can increase by more than 5% as assessed from vesicle electrodeformation. To elucidate the underlying molecular mechanism and the partitioning of F-azo in the membrane, molecular dynamics simulations are employed. Comparison with theoretically calculated shapes reveals that the budded shapes are governed by curvature elasticity, that the spontaneous curvature can be decomposed into a local and a nonlocal contribution, and that the local spontaneous curvature is about 1/(2.5 µm). The results show that exo- and endocytotic events can be controlled by light and that these photoinduced processes provide an attractive method to change membrane area and morphology.

19.
Adv Mater ; 30(8)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29315923

RESUMO

Proton conducting nanoporous materials attract substantial attention with respect to applications in fuel cells, supercapacitors, chemical sensors, and information processing devices inspired by biological systems. Here, a crystalline, nanoporous material which offers dynamic remote-control over the proton conduction is presented. This is realized by using surface-mounted metal-organic frameworks (SURMOFs) with azobenzene side groups that can undergo light-induced reversible isomerization between the stable trans and cis states. The trans-cis photoisomerization results in the modulation of the interaction between MOF and guest molecules, 1,4-butanediol and 1,2,3-triazole; enabling the switching between the states with significantly increased (trans) and reduced (cis) conductivity. Quantum chemical calculations show that the trans-to-cis isomerization results in the formation of stronger hydrogen bridges of the guest molecules with the azo groups, causing stronger bonding of the guest molecules and, as a result, smaller proton conductivity. It is foreseen that photoswitchable proton-conducting materials may find its application in advanced, remote-controllable chemical sensors, and a variety of devices based on the conductivity of protons or other charged molecules, which can be interfaced with biological systems.

20.
Chem Commun (Camb) ; 53(23): 3323-3326, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28210737

RESUMO

Azobenzene multi-state switches whose isomerization can be orthogonally induced with photons and electrons are presented. Exposure to green, blue, or ultraviolet light allows toggling between three isomers, while the fourth one is formed selectively via electrocatalytic isomerization.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa