Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nature ; 583(7817): 560-566, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32699397

RESUMO

There are concerns that recent climate change is altering the frequency and magnitude of river floods in an unprecedented way1. Historical studies have identified flood-rich periods in the past half millennium in various regions of Europe2. However, because of the low temporal resolution of existing datasets and the relatively low number of series, it has remained unclear whether Europe is currently in a flood-rich period from a long-term perspective. Here we analyse how recent decades compare with the flood history of Europe, using a new database composed of more than 100 high-resolution (sub-annual) historical flood series based on documentary evidence covering all major regions of Europe. We show that the past three decades were among the most flood-rich periods in Europe in the past 500 years, and that this period differs from other flood-rich periods in terms of its extent, air temperatures and flood seasonality. We identified nine flood-rich periods and associated regions. Among the periods richest in floods are 1560-1580 (western and central Europe), 1760-1800 (most of Europe), 1840-1870 (western and southern Europe) and 1990-2016 (western and central Europe). In most parts of Europe, previous flood-rich periods occurred during cooler-than-usual phases, but the current flood-rich period has been much warmer. Flood seasonality is also more pronounced in the recent period. For example, during previous flood and interflood periods, 41 per cent and 42 per cent of central European floods occurred in summer, respectively, compared with 55 per cent of floods in the recent period. The exceptional nature of the present-day flood-rich period calls for process-based tools for flood-risk assessment that capture the physical mechanisms involved, and management strategies that can incorporate the recent changes in risk.

2.
Nature ; 573(7772): 108-111, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31462777

RESUMO

Climate change has led to concerns about increasing river floods resulting from the greater water-holding capacity of a warmer atmosphere1. These concerns are reinforced by evidence of increasing economic losses associated with flooding in many parts of the world, including Europe2. Any changes in river floods would have lasting implications for the design of flood protection measures and flood risk zoning. However, existing studies have been unable to identify a consistent continental-scale climatic-change signal in flood discharge observations in Europe3, because of the limited spatial coverage and number of hydrometric stations. Here we demonstrate clear regional patterns of both increases and decreases in observed river flood discharges in the past five decades in Europe, which are manifestations of a changing climate. Our results-arising from the most complete database of European flooding so far-suggest that: increasing autumn and winter rainfall has resulted in increasing floods in northwestern Europe; decreasing precipitation and increasing evaporation have led to decreasing floods in medium and large catchments in southern Europe; and decreasing snow cover and snowmelt, resulting from warmer temperatures, have led to decreasing floods in eastern Europe. Regional flood discharge trends in Europe range from an increase of about 11 per cent per decade to a decrease of 23 per cent. Notwithstanding the spatial and temporal heterogeneity of the observational record, the flood changes identified here are broadly consistent with climate model projections for the next century4,5, suggesting that climate-driven changes are already happening and supporting calls for the consideration of climate change in flood risk management.


Assuntos
Mudança Climática/estatística & dados numéricos , Inundações/estatística & dados numéricos , Rios , Mudança Climática/história , Europa (Continente) , Inundações/história , Inundações/prevenção & controle , Mapeamento Geográfico , História do Século XX , História do Século XXI , Chuva , Estações do Ano , Fatores de Tempo
3.
Water Resour Res ; 59(7): e2022WR034053, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38440781

RESUMO

Contradictory interpretations of transient storage modeling (TSM) results of past studies hamper the understanding of how hydrologic conditions control solute transport in streams. To address this issue, we conduct 30 instantaneous tracer experiments in the Weierbach stream, Luxembourg. Using an iterative modeling approach, we calibrate TSM parameters and assess their identifiability across various hydrologic conditions. Near-stream groundwater monitoring wells and LIDAR scans of the streambed are used to evaluate the area of the hyporheic zone and of the submerged sediments for each experiment. Our findings show that increasing discharge enhances parameters interaction requiring more samples of TSM parameters to obtain identifiable results. Our results also indicate that transient storage at the study site is influenced by in-stream and hyporheic exchange processes during low discharge, likely due to the hyporheic zone's large extent and the relatively low water level compared to the size of slate fragments on the streambed. However, as discharge increases, in-stream storage zones become part of the advective channel and the lower localized stream water losses to the adjacent groundwater suggests a decrease of the hyporheic exchange on transient storage. The results obtained were utilized to generate a hydrograph for the study site illustrating the dynamic evolution of in-stream and hyporheic storage with varying discharge, providing insights into the expected influence of different transient storage processes prior to tracer experiments. Overall, our study enhances the understanding of the role of the hyporheic area and in-stream storage zones in transient storage and helps estimate TSM parameters more accurately.

4.
Water Resour Res ; 58(7): e2021WR030820, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35864820

RESUMO

This paper deals with the simulation of inundated areas for a region of 84,000 km2 from estimated flood discharges at a resolution of 2 m. We develop a modeling framework that enables efficient parallel processing of the project region by splitting it into simulation tiles. For each simulation tile, the framework automatically calculates all input data and boundary conditions required for the hydraulic simulation on-the-fly. A novel method is proposed that ensures regionally consistent flood peak probabilities. Instead of simulating individual events, the framework simulates effective hydrographs consistent with the flood quantiles by adjusting streamflow at river nodes. The model accounts for local effects from buildings, culverts, levees, and retention basins. The two-dimensional full shallow water equations are solved by a second-order accurate scheme for all river reaches in Austria with catchment sizes over 10 km2, totaling 33,380 km. Using graphics processing units (GPUs), a single NVIDIA Titan RTX simulates a period of 3 days for a tile with 50 million wet cells in less than 3 days. We find good agreement between simulated and measured stage-discharge relationships at gauges. The simulated flood hazard maps also compare well with local high-quality flood maps, achieving critical success index scores of 0.6-0.79.

5.
Water Resour Res ; 58(8): e2022WR031940, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36249278

RESUMO

Data assimilation (DA) is a powerful tool to optimally combine uncertain model simulations and observations. Among DA techniques, the particle filter (PF) has gained attention for its capacity to deal with nonlinear systems and for its relaxation of the Gaussian assumption. However, the PF may suffer from degeneracy and sample impoverishment. In this study, we propose an innovative approach, based on a tempered particle filter (TPF), aiming at mitigating PFs issues, thus extending over time the assimilation benefits. Probabilistic flood maps derived from synthetic aperture radar data are assimilated into a flood forecasting model through an iterative process including a particle mutation in order to keep diversity within the ensemble. Results show an improvement of the model forecasts accuracy, with respect to the Open Loop: on average the root mean square error (RMSE) of water levels decrease by 80% at the assimilation time and by 60% 2 days after the assimilation. A comparison with the Sequential Importance Sampling (SIS) is carried out showing that although SIS performances are generally comparable to the TPF ones at the assimilation time, they tend to decrease more quickly. For instance, on average TPF-based RMSE are 20% lower compared to the SIS-based ones 2 days after the assimilation. The application of the TPF determines higher critical success index values compared to the SIS. On average the increase in performances lasts for almost 3 days after the assimilation. Our study provides evidence that the application of the variant of the TPF enables more persistent benefits compared to the SIS.

6.
Geophys Res Lett ; 47(7): e2020GL087464, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34937957

RESUMO

The magnitudes of river floods in Europe have been observed to change, but their alignment with changes in the spatial coverage or extent of individual floods has not been clear. We analyze flood magnitudes and extents for 3,872 hydrometric stations across Europe over the past five decades and classify each flood based on antecedent weather conditions. We find positive correlations between flood magnitudes and extents for 95% of the stations. In central Europe and the British Isles, the association of increasing trends in magnitudes and extents is due to a magnitude-extent correlation of precipitation and soil moisture along with a shift in the flood generating processes. The alignment of trends in flood magnitudes and extents highlights the increasing importance of transnational flood risk management.

7.
Water Resour Res ; 56(7): e2019WR026575, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32728301

RESUMO

This paper proposes a method from Scan statistics for identifying flood-rich and flood-poor periods (i.e., anomalies) in flood discharge records. Exceedances of quantiles with 2-, 5-, and 10-year return periods are used to identify periods with unusually many (or few) threshold exceedances with respect to the reference condition of independent and identically distributed random variables. For the case of flood-rich periods, multiple window lengths are used in the identification process. The method is applied to 2,201 annual flood peak series in Europe between 1960 and 2010. Results indicate evidence for the existence of flood-rich and flood-poor periods, as about 2 to 3 times more anomalies are detected than what would be expected by chance. The frequency of the anomalies tends to decrease with an increasing threshold return period which is consistent with previous studies, but this may be partly related to the method and the record length of about 50 years. In the northwest of Europe, the frequency of stations with flood-rich periods tends to increase over time and the frequency of stations with flood-poor periods tends to decrease. In the east and south of Europe, the opposite is the case. There appears to exist a turning point around 1970 when the frequencies of anomalies start to change most clearly. This turning point occurs at the same time as a turning point of the North Atlantic Oscillation index. The method is also suitable for peak-over-threshold series and can be generalized to higher dimensions, such as space and space-time.

8.
Water Resour Res ; 55(8): 6327-6355, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32742038

RESUMO

The Sustainable Development Goals (SDGs) of the United Nations Agenda 2030 represent an ambitious blueprint to reduce inequalities globally and achieve a sustainable future for all mankind. Meeting the SDGs for water requires an integrated approach to managing and allocating water resources, by involving all actors and stakeholders, and considering how water resources link different sectors of society. To date, water management practice is dominated by technocratic, scenario-based approaches that may work well in the short term but can result in unintended consequences in the long term due to limited accounting of dynamic feedbacks between the natural, technical, and social dimensions of human-water systems. The discipline of sociohydrology has an important role to play in informing policy by developing a generalizable understanding of phenomena that arise from interactions between water and human systems. To explain these phenomena, sociohydrology must address several scientific challenges to strengthen the field and broaden its scope. These include engagement with social scientists to accommodate social heterogeneity, power relations, trust, cultural beliefs, and cognitive biases, which strongly influence the way in which people alter, and adapt to, changing hydrological regimes. It also requires development of new methods to formulate and test alternative hypotheses for the explanation of emergent phenomena generated by feedbacks between water and society. Advancing sociohydrology in these ways therefore represents a major contribution toward meeting the targets set by the SDGs, the societal grand challenge of our time.

9.
Water Resour Res ; 52(8): 6222-6242, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27840455

RESUMO

With population growth, increasing water demands and climate change the need to understand the current and future pathways to water security is becoming more pressing. To contribute to addressing this challenge, we examine the link between water stress and society through socio-hydrological modeling. We conceptualize the interactions between an agricultural society with its environment in a stylized way. We apply the model to the case of the ancient Maya, a population that experienced a peak during the Classic Period (AD 600-830) and then declined during the ninth century. The hypothesis that modest drought periods played a major role in the society's collapse is explored. Simulating plausible feedbacks between water and society we show that a modest reduction in rainfall may lead to an 80% population collapse. Population density and crop sensitivity to droughts, however, may play an equally important role. The simulations indicate that construction of reservoirs results in less frequent drought impacts, but if the reservoirs run dry, drought impact may be more severe and the population drop may be larger.

10.
Water Resour Res ; 52(9): 6730-6750, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27840456

RESUMO

This paper presents a novel framework that links imprecision (through a fuzzy approach) and stochastic uncertainty (through a Bayesian approach) in estimating flood probabilities from historical flood information and systematic flood discharge data. The method exploits the linguistic characteristics of historical source material to construct membership functions, which may be wider or narrower, depending on the vagueness of the statements. The membership functions are either included in the prior distribution or the likelihood function to obtain a fuzzy version of the flood frequency curve. The viability of the approach is demonstrated by three case studies that differ in terms of their hydromorphological conditions (from an Alpine river with bedrock profile to a flat lowland river with extensive flood plains) and historical source material (including narratives, town and county meeting protocols, flood marks and damage accounts). The case studies are presented in order of increasing fuzziness (the Rhine at Basel, Switzerland; the Werra at Meiningen, Germany; and the Tisza at Szeged, Hungary). Incorporating imprecise historical information is found to reduce the range between the 5% and 95% Bayesian credibility bounds of the 100 year floods by 45% and 61% for the Rhine and Werra case studies, respectively. The strengths and limitations of the framework are discussed relative to alternative (non-fuzzy) methods. The fuzzy Bayesian inference framework provides a flexible methodology that fits the imprecise nature of linguistic information on historical floods as available in historical written documentation.

11.
Water Resour Res ; 52(7): 5322-5340, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27609996

RESUMO

Changes in the river flood regime may be due to atmospheric processes (e.g., increasing precipitation), catchment processes (e.g., soil compaction associated with land use change), and river system processes (e.g., loss of retention volume in the floodplains). This paper proposes a new framework for attributing flood changes to these drivers based on a regional analysis. We exploit the scaling characteristics (i.e., fingerprints) with catchment area of the effects of the drivers on flood changes. The estimation of their relative contributions is framed in Bayesian terms. Analysis of a synthetic, controlled case suggests that the accuracy of the regional attribution increases with increasing number of sites and record lengths, decreases with increasing regional heterogeneity, increases with increasing difference of the scaling fingerprints, and decreases with an increase of their prior uncertainty. The applicability of the framework is illustrated for a case study set in Austria, where positive flood trends have been observed at many sites in the past decades. The individual scaling fingerprints related to the atmospheric, catchment, and river system processes are estimated from rainfall data and simple hydrological modeling. Although the distributions of the contributions are rather wide, the attribution identifies precipitation change as the main driver of flood change in the study region. Overall, it is suggested that the extension from local attribution to a regional framework, including multiple drivers and explicit estimation of uncertainty, could constitute a similar shift in flood change attribution as the extension from local to regional flood frequency analysis.

12.
Environ Microbiol ; 17(12): 4994-5007, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25922985

RESUMO

The bacterioplankton diversity in large rivers has thus far been under-sampled despite the importance of streams and rivers as components of continental landscapes. Here, we present a comprehensive dataset detailing the bacterioplankton diversity along the midstream of the Danube River and its tributaries. Using 16S rRNA-gene amplicon sequencing, our analysis revealed that bacterial richness and evenness gradually declined downriver in both the free-living and particle-associated bacterial communities. These shifts were also supported by beta diversity analysis, where the effects of tributaries were negligible in regards to the overall variation. In addition, the river was largely dominated by bacteria that are commonly observed in freshwaters. Dominated by the acI lineage, the freshwater SAR11 (LD12) and the Polynucleobacter group, typical freshwater taxa increased in proportion downriver and were accompanied by a decrease in soil and groundwater-affiliated bacteria. Based on views of the meta-community and River Continuum Concept, we interpret the observed taxonomic patterns and accompanying changes in alpha and beta diversity with the intention of laying the foundation for a unified concept for river bacterioplankton diversity.


Assuntos
Bactérias/classificação , Bactérias/genética , Plâncton/microbiologia , Rios/microbiologia , Bactérias/isolamento & purificação , Biodiversidade , Europa (Continente) , RNA Ribossômico 16S/genética
13.
Environ Sci Technol ; 47(15): 8548-56, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23755882

RESUMO

Numerous quantitative PCR assays for microbial fecal source tracking (MST) have been developed and evaluated in recent years. Widespread application has been hindered by a lack of knowledge regarding the geographical stability and hence applicability of such methods beyond the regional level. This study assessed the performance of five previously reported quantitative PCR assays targeting human-, cattle-, or ruminant-associated Bacteroidetes populations on 280 human and animal fecal samples from 16 countries across six continents. The tested cattle-associated markers were shown to be ruminant-associated. The quantitative distributions of marker concentrations in target and nontarget samples proved to be essential for the assessment of assay performance and were used to establish a new metric for quantitative source-specificity. In general, this study demonstrates that stable target populations required for marker-based MST occur around the globe. Ruminant-associated marker concentrations were strongly correlated with total intestinal Bacteroidetes populations and with each other, indicating that the detected ruminant-associated populations seem to be part of the intestinal core microbiome of ruminants worldwide. Consequently tested ruminant-targeted assays appear to be suitable quantitative MST tools beyond the regional level while the targeted human-associated populations seem to be less prevalent and stable, suggesting potential for improvements in human-targeted methods.


Assuntos
Bacteroidetes/genética , Reação em Cadeia da Polimerase/métodos , Animais , Bacteroidetes/classificação , Fezes/microbiologia , Humanos , Internacionalidade , Ruminantes
14.
Science ; 382(6670): 512-513, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37917702

RESUMO

The Southern Hemisphere has experienced a 20% drop in water availability in 20 years.

15.
J Appl Stat ; 50(14): 2934-2950, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808614

RESUMO

Statistical dependency measures such as Kendall's Tau or Spearman's Rho are frequently used to analyse the coherence between time series in environmental data analyses. Autocorrelation of the data can, however, result in spurious cross correlations if not accounted for. Here, we present the asymptotic distribution of the estimators of Spearman's Rho and Kendall's Tau, which can be used for statistical hypothesis testing of cross-correlations between autocorrelated observations. The results are derived using U-statistics under the assumption of absolutely regular (or ß-mixing) processes. These comprise many short-range dependent processes, such as ARMA-, GARCH- and some copula-based models relevant in the environmental sciences. We show that while the assumption of absolute regularity is required, the specific type of model does not have to be specified for the hypothesis test. Simulations show the improved performance of the modified hypothesis test for some common stochastic models and small to moderate sample sizes under autocorrelation. The methodology is applied to observed climatological time series of flood discharges and temperatures in Europe. While the standard test results in spurious correlations between floods and temperatures, this is not the case for the proposed test, which is more consistent with the literature on flood regime changes in Europe.

16.
Commun Earth Environ ; 4(1): 49, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665201

RESUMO

Anomalies in the frequency of river floods, i.e., flood-rich or -poor periods, cause biases in flood risk estimates and thus make climate adaptation measures less efficient. While observations have recently confirmed the presence of flood anomalies in Europe, their exact causes are not clear. Here we analyse streamflow and climate observations during 1960-2010 to show that shifts in flood generation processes contribute more to the occurrence of regional flood anomalies than changes in extreme rainfall. A shift from rain on dry soil to rain on wet soil events by 5% increased the frequency of flood-rich periods in the Atlantic region, and an opposite shift in the Mediterranean region increased the frequency of flood-poor periods, but will likely make singular extreme floods occur more often. Flood anomalies driven by changing flood generation processes in Europe may further intensify in a warming climate and should be considered in flood estimation and management.

17.
Remote Sens Environ ; 120(2): 188-196, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23483015

RESUMO

The Sentinel-1 will carry onboard a C-band radar instrument that will map the European continent once every four days and the global land surface at least once every twelve days with finest 5 × 20 m spatial resolution. The high temporal sampling rate and operational configuration make Sentinel-1 of interest for operational soil moisture monitoring. Currently, updated soil moisture data are made available at 1 km spatial resolution as a demonstration service using Global Mode (GM) measurements from the Advanced Synthetic Aperture Radar (ASAR) onboard ENVISAT. The service demonstrates the potential of the C-band observations to monitor variations in soil moisture. Importantly, a retrieval error estimate is also available; these are needed to assimilate observations into models. The retrieval error is estimated by propagating sensor errors through the retrieval model. In this work, the existing ASAR GM retrieval error product is evaluated using independent top soil moisture estimates produced by the grid-based landscape hydrological model (AWRA-L) developed within the Australian Water Resources Assessment system (AWRA). The ASAR GM retrieval error estimate, an assumed prior AWRA-L error estimate and the variance in the respective datasets were used to spatially predict the root mean square error (RMSE) and the Pearson's correlation coefficient R between the two datasets. These were compared with the RMSE calculated directly from the two datasets. The predicted and computed RMSE showed a very high level of agreement in spatial patterns as well as good quantitative agreement; the RMSE was predicted within accuracy of 4% of saturated soil moisture over 89% of the Australian land mass. Predicted and calculated R maps corresponded within accuracy of 10% over 61% of the continent. The strong correspondence between the predicted and calculated RMSE and R builds confidence in the retrieval error model and derived ASAR GM error estimates. The ASAR GM and Sentinel-1 have the same basic physical measurement characteristics, and therefore very similar retrieval error estimation method can be applied. Because of the expected improvements in radiometric resolution of the Sentinel-1 backscatter measurements, soil moisture estimation errors can be expected to be an order of magnitude less than those for ASAR GM. This opens the possibility for operationally available medium resolution soil moisture estimates with very well-specified errors that can be assimilated into hydrological or crop yield models, with potentially large benefits for land-atmosphere fluxes, crop growth, and water balance monitoring and modelling.

18.
Nat Commun ; 13(1): 5136, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050302

RESUMO

Increasing floods and droughts are raising concerns of an accelerating water cycle, however, the relative contributions to streamflow changes from climate and land management have not been assessed at the continental scale. We analyze streamflow data in major South American tropical river basins and show that water use and deforestation have amplified climate change effects on streamflow extremes over the past four decades. Drying (fewer floods and more droughts) is aligned with decreasing rainfall and increasing water use in agricultural zones and occurs in 42% of the study area. Acceleration (both more severe floods and droughts) is related to more extreme rainfall and deforestation and occurs in 29% of the study area, including southern Amazonia. The regionally accelerating water cycle may have adverse global impacts on carbon sequestration and food security.


Assuntos
Conservação dos Recursos Naturais , Ciclo Hidrológico , Brasil , Mudança Climática , Secas , Água
19.
Hydrol Process ; 36(8): e14667, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36247077

RESUMO

Understanding the role of soil moisture and other controls in runoff generation is important for predicting runoff across scales. This paper aims to identify the degree of non-linearity of the relationship between event peak runoff and potential controls for different runoff generation mechanisms in a small agricultural catchment. The study is set in the 66 ha Hydrological Open Air Laboratory, Austria, where discharge was measured at the catchment outlet and for 11 sub-catchments or hillslopes with different runoff generation mechanisms. Peak runoff of 73 events was related to three potential controls: event precipitation, soil moisture and groundwater levels. The results suggest that the hillslopes dominated by ephemeral overland flow exhibit the most non-linear runoff generation behaviour for its controls; runoff is only generated above a threshold of 95% of the maximum soil moisture. Runoff generation through tile drains and in wetlands is more linear. The largest winter and spring events at the catchment outlet are caused by runoff from hillslopes with shallow flow paths (ephemeral overland flow and tile drainage mechanisms), while the largest summer events are caused by other hillslopes, those with deeper flow paths or with saturation areas throughout the year. Therefore, the response of the entire catchment is a mix of the various mechanisms, and the groundwater contribution makes the response more linear. The implications for hydrological modelling are discussed.

20.
Clim Dyn ; 57(3-4): 1009-1021, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720434

RESUMO

Summer precipitation totals in the Alpine Region do not exhibit a systematic trend over the last 120 years. However, we find significant low frequency periodicity of interannual variability which occurs in synchronization with a dominant two-phase state of the atmospheric circulation over the Alps. Enhanced meridional flow increases precipitation variability through positive soil moisture precipitation feedbacks on the regional scale, whereas enhanced zonal flow results in less variability through constant moisture flow from the Atlantic and suppressed feedbacks with the land surface. The dominant state of the atmospheric circulation over the Alps in these periods appears to be steered by zonal sea surface temperature gradients in the mid-latitude North Atlantic. The strength and the location of the westerlies in the mid-latitude Atlantic play an important role in the physical mechanisms linking atmosphere and oceanic temperature gradients and the meridional/zonal circulation characteristics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa