Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Virol ; 93(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541839

RESUMO

The 240-kb Salmonella phage SPN3US genome encodes 264 gene products, many of which are functionally uncharacterized. We have previously used mass spectrometry to define the proteomes of wild-type and mutant forms of the SPN3US virion. In this study, we sought to determine whether this technique was suitable for the characterization of the SPN3US proteome during liquid infection. Mass spectrometry of SPN3US-infected cells identified 232 SPN3US and 1,994 Salmonella proteins. SPN3US proteins with related functions, such as proteins with roles in DNA replication, transcription, and virion formation, were coordinately expressed in a temporal manner. Mass spectral counts showed the four most abundant SPN3US proteins to be the major capsid protein, two head ejection proteins, and the functionally unassigned protein gp22. This high abundance of gp22 in infected bacteria contrasted with its absence from mature virions, suggesting that it might be the scaffold protein, an essential head morphogenesis protein yet to be identified in giant phages. We identified homologs to SPN3US gp22 in 45 related giant phages, including ϕKZ, whose counterpart is also abundant in infected bacteria but absent in the virion. We determined the ϕKZ counterpart to be cleaved in vitro by its prohead protease, an event that has been observed to promote head maturation of some other phages. Our findings are consistent with a scaffold protein assignment for SPN3US gp22, although direct evidence is required for its confirmation. These studies demonstrate the power of mass spectral analyses for facilitating the acquisition of new knowledge into the molecular events of viral infection.IMPORTANCE "Giant" phages with genomes >200 kb are being isolated in increasing numbers from a range of environments. With hosts such as Salmonella enterica, Pseudomonas aeruginosa, and Erwinia amylovora, these phages are of interest for phage therapy of multidrug-resistant pathogens. However, our understanding of how these complex phages interact with their hosts is impeded by the proportion (∼80%) of their gene products that are functionally uncharacterized. To develop the repertoire of techniques for analysis of phages, we analyzed a liquid infection of Salmonella phage SPN3US (240-kb genome) using third-generation mass spectrometry. We observed the temporal production of phage proteins whose genes collectively represent 96% of the SPN3US genome. These findings demonstrate the sensitivity of mass spectrometry for global proteomic profiling of virus-infected cells, and the identification of a candidate for a major head morphogenesis protein will facilitate further studies into giant phage head assembly.


Assuntos
Vírus Gigantes/genética , Glicoproteínas/genética , Proteoma/análise , Fagos de Salmonella/genética , Salmonella typhimurium/virologia , Proteínas Virais/genética , DNA Viral/genética , Perfilação da Expressão Gênica , Genoma Viral/genética , Espectrometria de Massas , Pseudomonas aeruginosa/virologia
2.
J Virol ; 90(22): 10284-10298, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27605673

RESUMO

Giant tailed bacterial viruses, or phages, such as Pseudomonas aeruginosa phage ϕKZ, have long genomes packaged into large, atypical virions. Many aspects of ϕKZ and related phage biology are poorly understood, mostly due to the fact that the functions of the majority of their proteins are unknown. We hypothesized that the Salmonella enterica phage SPN3US could be a useful model phage to address this gap in knowledge. The 240-kb SPN3US genome shares a core set of 91 genes with ϕKZ and related phages, ∼61 of which are virion genes, consistent with the expectation that virion complexity is an ancient, conserved feature. Nucleotide sequencing of 18 mutants enabled assignment of 13 genes as essential, information which could not have been determined by sequence-based searches for 11 genes. Proteome analyses of two SPN3US virion protein mutants with knockouts in 64 and 241 provided new insight into the composition and assembly of giant phage heads. The 64 mutant analyses revealed all the genetic determinants required for assembly of the SPN3US head and a likely head-tail joining role for gp64, and its homologs in related phages, due to the tailless-particle phenotype produced. Analyses of the mutation in 241, which encodes an RNA polymerase ß subunit, revealed that without this subunit, no other subunits are assembled into the head, and enabled identification of a "missing" ß' subunit domain. These findings support SPN3US as an excellent model for giant phage research, laying the groundwork for future analyses of their highly unusual virions, host interactions, and evolution. IMPORTANCE: In recent years, there has been a paradigm shift in virology with the realization that extremely large viruses infecting prokaryotes (giant phages) can be found in many environments. A group of phages related to the prototype giant phage ϕKZ are of great interest due to their virions being among the most complex of prokaryotic viruses and their potential for biocontrol and phage therapy applications. Our understanding of the biology of these phages is limited, as a large proportion of their proteins have not been characterized and/or have been deemed putative without any experimental verification. In this study, we analyzed Salmonella phage SPN3US using a combination of genomics, genetics, and proteomics and in doing so revealed new information regarding giant phage head structure and assembly and virion RNA polymerase composition. Our findings demonstrate the suitability of SPN3US as a model phage for the growing group of phages related to ϕKZ.


Assuntos
Genes Essenciais/genética , Fagos de Salmonella/genética , Proteínas Virais/genética , RNA Polimerases Dirigidas por DNA/genética , Genoma Viral/genética , Vírion/genética
3.
Proc Natl Acad Sci U S A ; 111(37): 13319-24, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25161284

RESUMO

Packaging specific exogenous active proteins and DNAs together within a single viral-nanocontainer is challenging. The bacteriophage T4 capsid (100 × 70 nm) is well suited for this purpose, because it can hold a single long DNA or multiple short pieces of DNA up to 170 kb packed together with more than 1,000 protein molecules. Any linear DNA can be packaged in vitro into purified procapsids. The capsid-targeting sequence (CTS) directs virtually any protein into the procapsid. Procapsids are assembled with specific CTS-directed exogenous proteins that are encapsidated before the DNA. The capsid also can display on its surface high-affinity eukaryotic cell-binding peptides or proteins that are in fusion with small outer capsid and head outer capsid surface-decoration proteins that can be added in vivo or in vitro. In this study, we demonstrate that the site-specific recombinase cyclic recombination (Cre) targeted into the procapsid is enzymatically active within the procapsid and recircularizes linear plasmid DNA containing two terminal loxP recognition sites when packaged in vitro. mCherry expression driven by a cytomegalovirus promoter in the capsid containing Cre-circularized DNA is enhanced over linear DNA, as shown in recipient eukaryotic cells. The efficient and specific packaging into capsids and the unpackaging of both DNA and protein with release of the enzymatically altered protein-DNA complexes from the nanoparticles into cells have potential in numerous downstream drug and gene therapeutic applications.


Assuntos
Bacteriófago T4/química , Capsídeo/química , DNA/química , Expressão Gênica , Técnicas de Transferência de Genes , Integrases/metabolismo , Nanopartículas/química , Sítios de Ligação Microbiológicos , Sequência de Bases , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , DNA/isolamento & purificação , Empacotamento do DNA , DNA Circular/metabolismo , Citometria de Fluxo , Fluorescência , Humanos , Dados de Sequência Molecular , Plasmídeos/metabolismo , Coloração e Rotulagem , Transformação Genética
4.
Proc Natl Acad Sci U S A ; 109(50): 20419-24, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23185020

RESUMO

Viral genome packaging into capsids is powered by high-force-generating motor proteins. In the presence of all packaging components, ATP-powered translocation in vitro expels all detectable tightly bound YOYO-1 dye from packaged short dsDNA substrates and removes all aminoacridine dye from packaged genomic DNA in vivo. In contrast, in the absence of packaging, the purified T4 packaging ATPase alone can only remove up to ∼1/3 of DNA-bound intercalating YOYO-1 dye molecules in the presence of ATP or ATP-γ-S. In sufficient concentration, intercalating dyes arrest packaging, but rare terminase mutations confer resistance. These distant mutations are highly interdependent in acquiring function and resistance and likely mark motor contact points with the translocating DNA. In stalled Y-DNAs, FRET has shown a decrease in distance from the phage T4 terminase C terminus to portal consistent with a linear motor, and in the Y-stem DNA compression between closely positioned dye pairs. Taken together with prior FRET studies of conformational changes in stalled Y-DNAs, removal of intercalating compounds by the packaging motor demonstrates conformational change in DNA during normal translocation at low packaging resistance and supports a proposed linear "DNA crunching" or torsional compression motor mechanism involving a transient grip-and-release structural change in B form DNA.


Assuntos
Empacotamento do DNA/fisiologia , DNA Viral/metabolismo , Montagem de Vírus/fisiologia , Trifosfato de Adenosina/metabolismo , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Benzoxazóis , Sítios de Ligação , DNA Viral/química , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Genes Virais , Substâncias Intercalantes , Modelos Moleculares , Proteínas Motores Moleculares/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Conformação de Ácido Nucleico , Compostos de Quinolínio , Especificidade por Substrato
5.
J Virol ; 87(15): 8713-25, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23740980

RESUMO

Pseudomonas aeruginosa myovirus KZ has a 270-kb genome within a T=27 icosahedral capsid that contains a large, unusual, and structurally well-defined protein cylindrical inner body (IB) spanning its interior. Proteolysis forms a pivotal stage in KZ head and IB morphogenesis, with the protease gp175 cleaving at least 19 of 49 different head proteins, including the major capsid protein and five major structural IB proteins. Here we show that the purified mature form of gp175 is active and cleaves purified IB structural proteins gp93 and gp89. Expression vector synthesis and purification of the zymogen/precursor yielded an active, mature-length protease, showing independent C-terminal gp175 self-cleavage autoactivation. Mutation of either the predicted catalytic serine or histidine inactivated mature gp175, supporting its classification as a serine protease and representing the first such direct biochemical demonstration with purified protease and substrate proteins for any phage protease. These mutations also blocked self-cleavage of the precursor while allowing intermolecular gp175 processing. To confirm the cleavage specificity of gp175, we mutated three cleavage sites in gp93, which blocked proteolysis at these sites. The N-terminal propeptide of gp93 was shown to undergo more extensive proteolysis than previously identified. We found that proteolysis in gp93 progressed from the N to C terminus, while blocking cleavage sites slowed but did not eliminate downstream proteolysis. These findings were shown by informatics to be relevant to the head morphogenesis of numbers of other related IB-containing giant phages as well as to T4 and herpesviruses, which have homologous proteases.


Assuntos
Myoviridae/enzimologia , Fagos de Pseudomonas/enzimologia , Serina Proteases/genética , Serina Proteases/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Análise Mutacional de DNA , Proteínas Mutantes/genética , Proteínas Mutantes/isolamento & purificação , Proteínas Mutantes/metabolismo , Myoviridae/genética , Fagos de Pseudomonas/genética , Pseudomonas aeruginosa/virologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Serina Proteases/isolamento & purificação , Proteínas não Estruturais Virais/isolamento & purificação
6.
Mol Microbiol ; 84(2): 324-39, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22429790

RESUMO

Encased within the 280 kb genome in the capsid of the giant myovirus φKZ is an unusual cylindrical proteinaceous 'inner body' of highly ordered structure. We present here mass spectrometry, bioinformatic and biochemical studies that reveal novel information about the φKZ head and the complex inner body. The identification of 39 cleavage sites in 19 φKZ head proteins indicates cleavage of many prohead proteins forms a major morphogenetic step in φKZ head maturation. The φKZ head protease, gp175, is newly identified here by a bioinformatics approach, as confirmed by a protein expression assay. Gp175 is distantly related to T4 gp21 and recognizes and cleaves head precursors at related but distinct S/A/G-X-E recognition sites. Within the φKZ head there are six high-copy-number proteins that are probable major components of the inner body. The molecular weights of five of these proteins are reduced 35-65% by cleavages making their mature form similar (26-31 kDa), while their precursors are dissimilar (36-88 kDa). Together the six abundant proteins sum to the estimated mass of the inner body (15-20 MDa). The identification of these proteins is important for future studies on the composition and function of the inner body.


Assuntos
Peptídeo Hidrolases/metabolismo , Fagos de Pseudomonas/enzimologia , Fagos de Pseudomonas/fisiologia , Proteínas Virais/metabolismo , Montagem de Vírus , Espectrometria de Massas , Peso Molecular , Myoviridae/química , Myoviridae/enzimologia , Myoviridae/fisiologia , Proteólise , Fagos de Pseudomonas/química , Pseudomonas aeruginosa/virologia
7.
J Biol Chem ; 286(21): 18878-89, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21454482

RESUMO

Conserved bacteriophage ATP-based DNA translocation motors consist of a multimeric packaging terminase docked onto a unique procapsid vertex containing a portal ring. DNA is translocated into the empty procapsid through the portal ring channel to high density. In vivo the T4 phage packaging motor deals with Y- or X-structures in the replicative concatemer substrate by employing a portal-bound Holliday junction resolvase that trims and releases these DNA roadblocks to packaging. Here using dye-labeled packaging anchored 3.7-kb Y-DNAs or linear DNAs, we demonstrate FRET between the dye-labeled substrates and GFP portal-containing procapsids and between GFP portal and single dye-labeled terminases. We show using FRET-fluorescence correlation spectroscopy that purified T4 gp49 endonuclease VII resolvase can release DNA compression in vitro in prohead portal packaging motor anchored and arrested Y-DNA substrates. In addition, using active terminases labeled at the N- and C-terminal ends with a single dye molecule, we show by FRET distance of the N-terminal GFP-labeled portal protein containing prohead at 6.9 nm from the N terminus and at 5.7 nm from the C terminus of the terminase. Packaging with a C-terminal fluorescent terminase on a GFP portal prohead, FRET shows a reduction in distance to the GFP portal of 0.6 nm in the arrested Y-DNA as compared with linear DNA; the reduction is reversed by resolvase treatment. Conformational changes in both the motor proteins and the DNA substrate itself that are associated with the power stroke of the motor are consistent with a proposed linear motor employing a terminal-to-portal DNA grip-and-release mechanism.


Assuntos
Bacteriófago T4/fisiologia , DNA Cruciforme/metabolismo , DNA Viral/metabolismo , Endodesoxirribonucleases/metabolismo , Recombinases/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus/fisiologia , DNA Cruciforme/genética , DNA Viral/genética , Endodesoxirribonucleases/genética , Escherichia coli/virologia , Recombinases/genética , Proteínas Virais/genética
8.
Biochem Biophys Res Commun ; 418(3): 537-40, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22285187

RESUMO

Recently the use of engineered viral scaffolds in biotechnology and medical applications has been increasing dramatically. T4 phage capsid derived nanoparticles (NPs) have potential advantages as sensors and in biotechnology. These applications require that the physical properties and cellular uptake of these NPs be understood. In this study we used a T4 deletion mutant to investigate the effects of removing both the Hoc and Soc proteins from the capsid surface on T4 tailless NPs. The surface charge, zeta potential, size, and cellular uptake efficiencies for both the T4 NP and T4ΔHocΔSoc NP mutant were measured and compared using dynamic light scattering and flow cytometry and significant differences were detected.


Assuntos
Bacteriófago T4/química , Proteínas do Capsídeo/genética , Capsídeo/química , Nanopartículas/química , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Biotecnologia , Citometria de Fluxo , Deleção de Genes , Luz , Espalhamento de Radiação , Propriedades de Superfície
9.
Adv Exp Med Biol ; 726: 469-87, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22297527

RESUMO

Large, tailed dsDNA-containing bacteriophage genomes are packaged to a conserved and high density (∼500 mg/ml), generally in ∼2.5-nm, duplex-to-duplex, spaced, organized DNA shells within icosahedral capsids. Phages with these condensate properties, however, differ markedly in their inner capsid structures: (1) those with a naked condensed DNA, (2) those with many dispersed unstructured proteins embedded within the DNA, (3) those with a small number of localized proteins, and (4) those with a reduced or DNA-free internal protein structure of substantial volume. The DNA is translocated and condensed by a high-force ATPase motor into a procapsid already containing the proteins that are to be ejected together with the DNA into the infected host. The condensed genome structure of a single-phage type is unlikely to be precisely determined and can change without loss of function to fit an altered capsid size or internal structure. Although no such single-phage condensed genome structure is known exactly, it is known that a single general structure is unlikely to apply to all such phages.


Assuntos
Bacteriófagos/genética , DNA Viral/ultraestrutura , Genoma Viral , Capsídeo/fisiologia , Capsídeo/ultraestrutura , Modelos Moleculares , Conformação Proteica , Proteínas Virais/química , Montagem de Vírus
10.
Virol J ; 7: 356, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21129201

RESUMO

The bacteriophage T4 capsid is an elongated icosahedron, 120 nm long and 86 nm wide, and is built with three essential proteins; gp23*, which forms the hexagonal capsid lattice, gp24*, which forms pentamers at eleven of the twelve vertices, and gp20, which forms the unique dodecameric portal vertex through which DNA enters during packaging and exits during infection. The past twenty years of research has greatly elevated the understanding of phage T4 head assembly and DNA packaging. The atomic structure of gp24 has been determined. A structural model built for gp23 using its similarity to gp24 showed that the phage T4 major capsid protein has the same fold as that found in phage HK97 and several other icosahedral bacteriophages. Folding of gp23 requires the assistance of two chaperones, the E. coli chaperone GroEL and the phage coded gp23-specific chaperone, gp31. The capsid also contains two non-essential outer capsid proteins, Hoc and Soc, which decorate the capsid surface. The structure of Soc shows two capsid binding sites which, through binding to adjacent gp23 subunits, reinforce the capsid structure. Hoc and Soc have been extensively used in bipartite peptide display libraries and to display pathogen antigens including those from HIV, Neisseria meningitides, Bacillus anthracis, and FMDV. The structure of Ip1*, one of the components of the core, has been determined, which provided insights on how IPs protect T4 genome against the E. coli nucleases that degrade hydroxymethylated and glycosylated T4 DNA. Extensive mutagenesis combined with the atomic structures of the DNA packaging/terminase proteins gp16 and gp17 elucidated the ATPase and nuclease functional motifs involved in DNA translocation and headful DNA cutting. Cryo-EM structure of the T4 packaging machine showed a pentameric motor assembled with gp17 subunits on the portal vertex. Single molecule optical tweezers and fluorescence studies showed that the T4 motor packages DNA at a rate of up to 2000 bp/sec, the fastest reported to date of any packaging motor. FRET-FCS studies indicate that the DNA gets compressed during the translocation process. The current evidence suggests a mechanism in which electrostatic forces generated by ATP hydrolysis drive the DNA translocation by alternating the motor between tensed and relaxed states.


Assuntos
Bacteriófago T4/química , Bacteriófago T4/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/ultraestrutura , Substâncias Macromoleculares/química , Substâncias Macromoleculares/ultraestrutura , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/ultraestrutura , Imageamento Tridimensional , Modelos Biológicos , Modelos Moleculares , Proteínas Virais/química , Proteínas Virais/ultraestrutura , Vírion/química , Vírion/ultraestrutura
11.
Viruses ; 12(5)2020 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397493

RESUMO

A "DNA crunching" linear motor mechanism that employs a grip-and-release transient spring like compression of B- to A-form DNA has been found in our previous studies. Our FRET measurements in vitro show a decrease in distance from TerL to portal during packaging; furthermore, there is a decrease in distance between closely positioned dye pairs in the Y-stem of translocating Y-DNA that conforms to B- and A- structure. In normal translocation into the prohead the TerL motor expels all B-form tightly binding YOYO-1 dye that cannot bind A-form. The TerL motor cannot package A-form dsRNA. Our work reported here shows that addition of helper B form DNA:DNA (D:D) 20mers allows increased packaging of heteroduplex A-form DNA:RNA 20mers (D:R), evidence for a B- to A-form spring motor pushing duplex nucleic acid. A-form DNA:RNA 25mers, 30mers, and 35mers alone are efficiently packaged into proheads by the TerL motor showing that a proposed hypothetical dehydration motor mechanism operating on duplex substrates does not provide the packaging motor force. Taken together with our previous studies showing TerL motor protein motion toward the portal during DNA packaging, our present studies of short D:D and D:R duplex nucleic acid substrates strongly supports our previous evidence that the protein motor pushes rather than pulls or dehydrates duplex substrates to provide the translocation into prohead packaging force.


Assuntos
Bacteriófago T4/genética , Empacotamento do DNA , DNA Viral/genética , Endodesoxirribonucleases/metabolismo , Proteínas Virais/metabolismo , Bacteriófago T4/química , Bacteriófago T4/fisiologia , DNA Viral/química , DNA Viral/metabolismo , Desidratação , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Conformação de Ácido Nucleico , Proteínas Virais/química , Proteínas Virais/genética
12.
Viruses ; 12(11)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182609

RESUMO

The virions of tailed bacteriophages and the evolutionarily related herpesviruses contain, in addition to highly condensed DNA, substantial quantities of internal proteins. These proteins ("ejection proteins") have roles in scaffolding, maturational proteolysis, and cell-to-cell delivery. Whereas capsids are amenable to analysis at high resolution by cryo-electron microscopy, internal proteins have proved difficult to localize. In this study, we investigated the distribution of internal proteins in T4 by bubblegram imaging. Prior work has shown that at suitably high electron doses, radiation damage generates bubbles of hydrogen gas in nucleoprotein specimens. Using DNA origami as a test specimen, we show that DNA does not bubble under these conditions; it follows that bubbles represent markers for proteins. The interior of the prolate T4 head, ~1000 Å long by ~750 Å wide, has a bubble-free zone that is ~100-110 Å thick, underlying the capsid shell from which proteins are excluded by highly ordered DNA. Inside this zone, which is plausibly occupied by ~4 layers of coaxial spool, bubbles are generated at random locations in a disordered ensemble of internal proteins and the remainder of the genome.


Assuntos
Bacteriófago T4/química , Microscopia Crioeletrônica/métodos , Empacotamento do DNA , Capsídeo/química , DNA Viral/química , Modelos Moleculares , Proteínas do Nucleocapsídeo/química , Montagem de Vírus
13.
Viruses ; 12(7)2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32635654

RESUMO

The head of Salmonella virus SPN3US is composed of ~50 different proteins and is unusual because within its packaged genome there is a mass (>40 MDa) of ejection or E proteins that enter the Salmonella cell. The assembly mechanisms of this complex structure are poorly understood. Previous studies showed that eight proteins in the mature SPN3US head had been cleaved by the prohead protease. In this study, we present the characterization of SPN3US prohead protease mutants using transmission electron microscopy and mass spectrometry. In the absence of the prohead protease, SPN3US head formation was severely impeded and proheads accumulated on the Salmonella inner membrane. This impediment is indicative of proteolysis being necessary for the release and subsequent DNA packaging of proheads in the wild-type phage. Proteomic analyses of gp245- proheads that the normal proteolytic processing of head proteins had not occurred. Assays of a recombinant, truncated form of the protease found it was active, leading us to hypothesize that the C-terminal propeptide has a role in targeting the protease into the prohead core. Our findings provide new evidence regarding the essential role of proteolysis for correct head assembly in this remarkable parasite.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Fagos de Salmonella/metabolismo , Montagem de Vírus , Capsídeo/ultraestrutura , Genoma Viral/genética , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Salmonella/virologia , Fagos de Salmonella/genética , Fagos de Salmonella/ultraestrutura , Análise de Sequência de DNA , Internalização do Vírus
14.
Virology ; 536: 39-48, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31400548

RESUMO

A bacteriophage T4 DNA "synapsis model" proposes that the bacteriophage T4 terminase small subunit (TerS) apposes two pac site containing dsDNA homologs to gauge concatemer maturation adequate for packaging initiation. N-terminus, C-terminus, or both ends modified fusion Ter S proteins retain function. Replacements of the TerS gene in the T4 genome with fusion genes encoding larger (18-45 kDa) TerS-eGFP and TerS-mCherry fluorescent fusion proteins function without significant change in phenotype. Co-infection and co-expression by T4 phages encoding TerS-eGFP and TerS-mCherry shows in vivo FRET in infected bacteria comparable to that of the purified, denatured and then renatured, mixed fusion proteins in vitro. FRET of purified, denatured-renatured, mixed temperature sensitive and native TerS fusion proteins at low and high temperature in vitro shows that TerS ring-like oligomer formation is essential for function in vivo. Super-resolution STORM and PALM microscopy of intercalating dye YOYO-1 DNA and photoactivatable TerS-PAmCherry-C1 fusions support accumulation of TerS dimeric or multiple ring-like oligomer structures containing DNA and gp16-mCherry in vivo as well as in vitro to regulate pac site cutting.


Assuntos
Bacteriófago T4/genética , Pareamento Cromossômico , Empacotamento do DNA , DNA Viral/química , Endodesoxirribonucleases/química , Genoma Viral , Bacteriófago T4/metabolismo , Bacteriófago T4/ultraestrutura , Sítios de Ligação , DNA Viral/genética , DNA Viral/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Escherichia coli/ultraestrutura , Escherichia coli/virologia , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Montagem de Vírus , Proteína Vermelha Fluorescente
15.
J Mol Biol ; 366(3): 768-78, 2007 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17188297

RESUMO

The Escherichia coli CT596 prophage exclusion genes gmrS and gmrD were found to encode a novel type IV modification-dependent restriction nuclease that targets and digests glucosylated (glc)-hydroxymethylcytosine (HMC) DNAs. The protein products GmrS (36 kDa) and GmrD (27 kDa) were purified and found to be inactive separately, but together degraded several different glc-HMC modified DNAs (T4, T2 and T6). The GMR enzyme is able to degrade both alpha-glucosy-HMC T4 DNA and beta-glucosyl-HMC T4 DNA, whereas no activity was observed against non-modified DNAs including unmodified T4 cytosine (C) DNA or non-glucosylated T4 HMC DNA. Enzyme activity requires NTP, favors UTP, is stimulated by calcium, and initially produces 4 kb DNA fragments that are further degraded to low molecular mass products. The enzyme is inhibited by the T4 phage internal protein I* (IPI*) to which it was found to bind. Overall activities of the purified GmrSD enzyme are in good agreement with the properties of the cloned gmr genes in vivo and suggest a restriction enzyme specific for sugar modified HMC DNAs. IPI* thus represents a third generation bacteriophage defense against restriction nucleases of the Gmr type.


Assuntos
Citosina/análogos & derivados , Enzimas de Restrição do DNA/metabolismo , DNA Viral/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , 5-Metilcitosina/análogos & derivados , Proteínas do Capsídeo/metabolismo , Cromatografia de Afinidade , Colífagos , Citosina/metabolismo , DNA Viral/química , Escherichia coli/virologia , Proteínas de Escherichia coli/isolamento & purificação , Evolução Molecular , Proteínas Mutantes/metabolismo , Myoviridae , Conformação de Ácido Nucleico , Nucleotídeos/metabolismo , Ligação Proteica , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Especificidade por Substrato
16.
J Mol Biol ; 366(3): 779-89, 2007 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17188711

RESUMO

The Escherichia coli isolate CT596 excludes infection by the Myoviridae T4 ip1(-) phage that lacks the encapsidated IPI* protein normally injected into the host with the phage DNA. Screening of a CT596 genomic library identified adjacent genes responsible for this exclusion, gmrS (942 bp) and gmrD (708 bp) that are encoded by a cryptic prophage DNA. The two genes are necessary and sufficient to confer upon a host the ability to exclude infection by T4 ip1(-) phage and other glucosyl-hydroxymethylcytosine (glc-HMC) Tevens lacking the ip1 gene, yet allow infection by phages with non-glucoslyated cytosine (C) DNA that lack the ip1 gene. A plasmid expressing the ip1 gene product, IPI*, allows growth of Tevens lacking ip1 on E. coli strains carrying the cloned gmrS/gmrD genes. Members of the Teven family carry a diverse and, in some cases, expanded set of ip1 locus genes. In vivo analysis suggests a family of gmr genes that specifically target sugar-HMC modified DNA have evolved to exclude Teven phages, and these exclusion genes have in turn been countered by a family of injected exclusion inhibitors that likely help determine the host range of different glc-HMC phages.


Assuntos
Bacteriófagos/metabolismo , Proteínas do Capsídeo/metabolismo , Citosina/análogos & derivados , DNA Viral/metabolismo , 5-Metilcitosina/análogos & derivados , Sequência de Aminoácidos , Bacteriófago T4/metabolismo , Sequência de Bases , Células Clonais , Citosina/metabolismo , Enzimas de Restrição do DNA/metabolismo , Escherichia coli/enzimologia , Escherichia coli/virologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Genes Bacterianos , Dados de Sequência Molecular , Prófagos/genética , Análise de Sequência de DNA , Especificidade por Substrato
17.
Viruses ; 10(6)2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29890699

RESUMO

In bacteriophages related to T4, hydroxymethylcytosine (hmC) is incorporated into the genomic DNA during DNA replication and is then further modified to glucosyl-hmC by phage-encoded glucosyltransferases. Previous studies have shown that RB69 shares a core set of genes with T4 and relatives. However, unlike the other “RB” phages, RB69 is unable to recombine its DNA with T4 or with the other “RB” isolates. In addition, despite having homologs to the T4 enzymes used to synthesize hmC, RB69 has no identified homolog to known glucosyltransferase genes. In this study we sought to understand the basis for RB69’s behavior using high-pH anion exchange chromatography (HPAEC) and mass spectrometry. Our analyses identified a novel phage epigenetic DNA sugar modification in RB69 DNA, which we have designated arabinosyl-hmC (ara-hmC). We sought a putative glucosyltranserase responsible for this novel modification and determined that RB69 also has a novel transferase gene, ORF003c, that is likely responsible for the arabinosyl-specific modification. We propose that ara-hmC was responsible for RB69 being unable to participate in genetic exchange with other hmC-containing T-even phages, and for its described incipient speciation. The RB69 ara-hmC also likely protects its DNA from some anti-phage type-IV restriction endonucleases. Several T4-related phages, such as E. coli phage JS09 and Shigella phage Shf125875 have homologs to RB69 ORF003c, suggesting the ara-hmC modification may be relatively common in T4-related phages, highlighting the importance of further work to understand the role of this modification and the biochemical pathway responsible for its production.


Assuntos
Arabinose/análise , Colífagos/química , Colífagos/fisiologia , DNA Viral/química , DNA Viral/metabolismo , Glicosilação , Cromatografia por Troca Iônica , Colífagos/genética , Epigênese Genética , Regulação Viral da Expressão Gênica , Glucosiltransferases/genética , Espectrometria de Massas , Proteínas Virais/genética
18.
J Biomed Mater Res A ; 81(1): 59-65, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17109417

RESUMO

A portfolio of crosslinked chitosan:collagen blends was prepared, and their microarchitecture and water binding capacity were studied to investigate their application for adipose tissue engineering. Glutaraldehyde (GA) concentration had little effect on scaffold morphology or water binding capacity. However, the processing freezing temperature prior to lyophilization affected both. In vitro cytocompatibility of pre-adipocytes (PAs) was assessed for a candidate collagen:chitosan blend using two assays. Results confirm the viability of PAs on GA-crosslinked collagen:chitosan scaffolds. A rat subcutaneous pocket assay was employed to assess PA-seeded scaffolds in vivo. Animal tests proved that PA-seeded scaffolds were biocompatible, could induce vascularization, and form adipose tissue.


Assuntos
Implantes Absorvíveis , Adipócitos/citologia , Quitosana , Colágeno , Glutaral , Engenharia Tecidual , Adipócitos/metabolismo , Tecido Adiposo/crescimento & desenvolvimento , Animais , Diferenciação Celular , Masculino , Teste de Materiais/normas , Neovascularização Fisiológica , Ratos , Ratos Endogâmicos Lew
19.
Front Microbiol ; 8: 2251, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29187846

RESUMO

Giant Salmonella phage SPN3US has a 240-kb dsDNA genome and a large complex virion composed of many proteins for which the functions of most are undefined. We recently determined that SPN3US shares a core set of genes with related giant phages and sequenced and characterized 18 amber mutants to facilitate its use as a genetic model system. Notably, SPN3US and related giant phages contain a bolus of ejection proteins within their heads, including a multi-subunit virion RNA polymerase (vRNAP), that enter the host cell with the DNA during infection. In this study, we characterized the SPN3US virion using mass spectrometry to gain insight into its head composition and the features that its head shares with those of related giant phages and with T4 phage. SPN3US has only homologs to the T4 proteins critical for prohead shell formation, the portal and major capsid proteins, as well as to the major enzymes essential for head maturation, the prohead protease and large terminase subunit. Eight of ~50 SPN3US head proteins were found to undergo proteolytic processing at a cleavage motif by the prohead protease gp245. Gp245 undergoes auto-cleavage of its C-terminus, suggesting this is a conserved activation and/or maturation feature of related phage proteases. Analyses of essential head gene mutants showed that the five subunits of the vRNAP must be assembled for any subunit to be incorporated into the prohead, although the assembled vRNAP must then undergo subsequent major conformational rearrangements in the DNA packed capsid to allow ejection through the ~30 Å diameter tail tube for transcription from the injected DNA. In addition, ejection protein candidate gp243 was found to play a critical role in head assembly. Our analyses of the vRNAP and gp243 mutants highlighted an unexpected dichotomy in giant phage head maturation: while all analyzed giant phages have a homologous protease that processes major capsid and portal proteins, processing of ejection proteins is not always a stable/defining feature. Our identification in SPN3US, and related phages, of a diverged paralog to the prohead protease further hints toward a complicated evolutionary pathway for giant phage head structure and assembly.

20.
Virology ; 489: 116-27, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26748333

RESUMO

The virion proteins of Pseudoalteromonas phage φRIO-1 were identified and quantitated by mass spectrometry and gel densitometry. Bioinformatic methods customized to deal with extreme divergence defined a φRIO-1 tail structure homology group of phages, which was further related to T7 tail and internal virion proteins (IVPs). Similarly, homologs of tubular tail components and internal virion proteins were identified in essentially all completely sequenced podoviruses other than those in the subfamily Picovirinae. The podoviruses were subdivided into several tail structure homology groups, in addition to the RIO-1 and T7 groups. Molecular phylogeny indicated that these groups all arose about the same ancient time as the φRIO-1/T7 split. Hence, the T7-like infection mechanism involving the IVPs was an ancestral property of most podoviruses. The IVPs were found to variably host both tail lysozyme domains and domains destined for the cytoplasm, including the N4 virion RNA polymerase embedded within an IVP-D homolog.


Assuntos
Bacteriófagos/genética , Evolução Molecular , Podoviridae/genética , Pseudoalteromonas/virologia , Bacteriófagos/classificação , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/isolamento & purificação , Genoma Viral , Dados de Sequência Molecular , Filogenia , Podoviridae/classificação , Podoviridae/crescimento & desenvolvimento , Podoviridae/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa