RESUMO
Uncovering the full list of human ciliary genes holds enormous promise for the diagnosis of cilia-related human diseases, collectively known as ciliopathies. Currently, genetic diagnoses of many ciliopathies remain incomplete (1-3). While various independent approaches theoretically have the potential to reveal the entire list of ciliary genes, approximately 30% of the genes on the ciliary gene list still stand as ciliary candidates (4,5). These methods, however, have mainly relied on a single strategy to uncover ciliary candidate genes, making the categorization challenging due to variations in quality and distinct capabilities demonstrated by different methodologies. Here, we develop a method called CilioGenics that combines several methodologies (single-cell RNA sequencing, protein-protein interactions (PPIs), comparative genomics, transcription factor (TF) network analysis, and text mining) to predict the ciliary capacity of each human gene. Our combined approach provides a CilioGenics score for every human gene that represents the probability that it will become a ciliary gene. Compared to methods that rely on a single method, CilioGenics performs better in its capacity to predict ciliary genes. Our top 500 gene list includes 258 new ciliary candidates, with 31 validated experimentally by us and others. Users may explore the whole list of human genes and CilioGenics scores on the CilioGenics database (https://ciliogenics.com/).
Assuntos
Cílios , Ciliopatias , Bases de Dados Genéticas , Fatores de Transcrição , Humanos , Cílios/genética , Cílios/metabolismo , Ciliopatias/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Genômica/métodos , Análise de Célula Única/métodos , Mineração de Dados/métodos , SoftwareRESUMO
Better methods are required to interpret the pathogenicity of disease-associated variants of uncertain significance (VUS), which cannot be actioned clinically. In this study, we explore the use of an animal model (Caenorhabditis elegans) for in vivo interpretation of missense VUS alleles of TMEM67, a cilia gene associated with ciliopathies. CRISPR/Cas9 gene editing was used to generate homozygous knock-in C. elegans worm strains carrying TMEM67 patient variants engineered into the orthologous gene (mks-3). Quantitative phenotypic assays of sensory cilia structure and function (neuronal dye filling, roaming and chemotaxis assays) measured how the variants impacted mks-3 gene function. Effects of the variants on mks-3 function were further investigated by looking at MKS-3::GFP localization and cilia ultrastructure. The quantitative assays in C. elegans accurately distinguished between known benign (Asp359Glu, Thr360Ala) and known pathogenic (Glu361Ter, Gln376Pro) variants. Analysis of eight missense VUS generated evidence that three are benign (Cys173Arg, Thr176Ile and Gly979Arg) and five are pathogenic (Cys170Tyr, His782Arg, Gly786Glu, His790Arg and Ser961Tyr). Results from worms were validated by a genetic complementation assay in a human TMEM67 knock-out hTERT-RPE1 cell line that tests a TMEM67 signalling function. We conclude that efficient genome editing and quantitative functional assays in C. elegans make it a tractable in vivo animal model for rapid, cost-effective interpretation of ciliopathy-associated missense VUS alleles.
Assuntos
Proteínas de Caenorhabditis elegans , Ciliopatias , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cílios/genética , Cílios/metabolismo , Ciliopatias/metabolismo , Edição de Genes , Humanos , Mutação de Sentido Incorreto/genéticaRESUMO
Age-related macular degeneration (AMD) is a leading cause of blindness among the elderly. Canonical disease models suggest that defective interactions between complement factor H (CFH) and cell surface heparan sulfate (HS) result in increased alternative complement pathway activity, cytolytic damage, and tissue inflammation in the retina. Although these factors are thought to contribute to increased disease risk, multiple studies indicate that noncanonical mechanisms that result from defective CFH and HS interaction may contribute to the progression of AMD as well. A total of 60 ciliated sensory neurons in the nematode Caenorhabditis elegans detect chemical, olfactory, mechanical, and thermal cues in the environment. Here, we find that a C. elegans CFH homolog localizes on CEP mechanosensory neuron cilia where it has noncanonical roles in maintaining inversin/NPHP-2 within its namesake proximal compartment and preventing inversin/NPHP-2 accumulation in distal cilia compartments in aging adults. CFH localization and maintenance of inversin/NPHP-2 compartment integrity depend on the HS 3-O sulfotransferase HST-3.1 and the transmembrane proteoglycan syndecan/SDN-1. Defective inversin/NPHP-2 localization in mouse and human photoreceptors with CFH mutations indicates that these functions and interactions may be conserved in vertebrate sensory neurons, suggesting that previously unappreciated defects in cilia structure may contribute to the progressive photoreceptor dysfunction associated with CFH loss-of-function mutations in some AMD patients.
Assuntos
Fator H do Complemento/metabolismo , Heparitina Sulfato/metabolismo , Retina/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cílios/metabolismo , Fator H do Complemento/fisiologia , Heparitina Sulfato/fisiologia , Degeneração Macular/metabolismo , Degeneração Macular/fisiopatologia , Neurônios/metabolismo , Fatores de Transcrição/metabolismoRESUMO
RAB28 is a farnesylated, ciliary G-protein. Patient variants in RAB28 are causative of autosomal recessive cone-rod dystrophy (CRD), an inherited human blindness. In rodent and zebrafish models, the absence of Rab28 results in diminished dawn, photoreceptor, outer segment phagocytosis (OSP). Here, we demonstrate that Rab28 is also required for dusk peaks of OSP, but not for basal OSP levels. This study further elucidated the molecular mechanisms by which Rab28 controls OSP and inherited blindness. Proteomic profiling identified factors whose expression in the eye or whose expression at dawn and dusk peaks of OSP is dysregulated by loss of Rab28. Notably, transgenic overexpression of Rab28, solely in zebrafish cones, rescues the OSP defect in rab28 KO fish, suggesting rab28 gene replacement in cone photoreceptors is sufficient to regulate Rab28-OSP. Rab28 loss also perturbs function of the visual cycle as retinoid levels of 11-cRAL, 11cRP, and atRP are significantly reduced in larval and adult rab28 KO retinae (p < .05). These data give further understanding on the molecular mechanisms of RAB28-associated CRD, highlighting roles of Rab28 in both peaks of OSP, in vitamin A metabolism and in retinoid recycling.
Assuntos
Proteômica , Peixe-Zebra , Animais , Cegueira/metabolismo , Humanos , Fagocitose , Células Fotorreceptoras Retinianas Cones/metabolismo , Retinoides/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismoRESUMO
Primary cilium structure and function relies on control of ciliary membrane homeostasis, regulated by membrane trafficking processes that deliver and retrieve ciliary components at the periciliary membrane. However, the molecular mechanisms controlling ciliary membrane establishment and maintenance, especially in relation to endocytosis, remain poorly understood. Here, using Caenorhabditis elegans, we describe closely linked functions for early endosome (EE) maturation factors RABS-5 (Rabenosyn-5) and VPS-45 (VPS45) in regulating cilium length and morphology, ciliary and periciliary membrane volume, and ciliary signalling-related sensory behaviour. We demonstrate that RABS-5 and VPS-45 control periciliary vesicle number and levels of select EE/endocytic markers (WDFY-2, CAV-1) and the ciliopathy membrane receptor PKD-2 (polycystin-2). Moreover, we show that CAV-1 (caveolin-1) also controls PKD-2 ciliary levels and associated sensory behaviour. These data link RABS-5 and VPS-45 ciliary functions to the processing of periciliary-derived endocytic vesicles and regulation of ciliary membrane homeostasis. Our findings also provide insight into the regulation of PKD-2 ciliary levels via integrated endosomal sorting and CAV-1-mediated endocytosis.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Caveolina 1/metabolismo , Membrana Celular/metabolismo , Canais de Cátion TRPP/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Caveolina 1/genética , Membrana Celular/genética , Cílios/genética , Cílios/metabolismo , Canais de Cátion TRPP/genética , Proteínas de Transporte Vesicular/genéticaRESUMO
Rab and Arl guanine nucleotide-binding (G) proteins regulate trafficking pathways essential for the formation, function and composition of primary cilia, which are sensory devices associated with Sonic hedgehog (Shh) signalling and ciliopathies. Here, using mammalian cells and zebrafish, we uncover ciliary functions for Rab35, a multitasking G protein with endocytic recycling, actin remodelling and cytokinesis roles. Rab35 loss via siRNAs, morpholinos or knockout reduces cilium length in mammalian cells and the zebrafish left-right organiser (Kupffer's vesicle) and causes motile cilia-associated left-right asymmetry defects. Consistent with these observations, GFP-Rab35 localises to cilia, as do GEF (DENND1B) and GAP (TBC1D10A) Rab35 regulators, which also regulate ciliary length and Rab35 ciliary localisation. Mammalian Rab35 also controls the ciliary membrane levels of Shh signalling regulators, promoting ciliary targeting of Smoothened, limiting ciliary accumulation of Arl13b and the inositol polyphosphate 5-phosphatase (INPP5E). Rab35 additionally regulates ciliary PI(4,5)P2 levels and interacts with Arl13b. Together, our findings demonstrate roles for Rab35 in regulating cilium length, function and membrane composition and implicate Rab35 in pathways controlling the ciliary levels of Shh signal regulators.
Assuntos
Cílios/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Padronização Corporal , Linhagem Celular , Células HEK293 , Humanos , Membranas/metabolismo , Camundongos , Modelos Biológicos , Células NIH 3T3 , Nucleotídeos/metabolismo , Ligação Proteica , Transporte Proteico , Telomerase/metabolismoRESUMO
Genetic disorders caused by cilia dysfunction, termed ciliopathies, frequently involve the intraflagellar transport (IFT) system. Mutations in IFT subunits-including IFT-dynein motor DYNC2H1-impair ciliary structures and Hedgehog signalling, typically leading to "skeletal" ciliopathies such as Jeune asphyxiating thoracic dystrophy. Intriguingly, IFT gene mutations also cause eye, kidney and brain ciliopathies often linked to defects in the transition zone (TZ), a ciliary gate implicated in Hedgehog signalling. Here, we identify a C. elegans temperature-sensitive (ts) IFT-dynein mutant (che-3; human DYNC2H1) and use it to show a role for retrograde IFT in anterograde transport and ciliary maintenance. Unexpectedly, correct TZ assembly and gating function for periciliary proteins also require IFT-dynein. Using the reversibility of the novel ts-IFT-dynein, we show that restoring IFT in adults (post-developmentally) reverses defects in ciliary structure, TZ protein localisation and ciliary gating. Notably, this ability to reverse TZ defects declines as animals age. Together, our findings reveal a previously unknown role for IFT in TZ assembly in metazoans, providing new insights into the pathomechanism and potential phenotypic overlap between IFT- and TZ-associated ciliopathies.
Assuntos
Caenorhabditis elegans/metabolismo , Flagelos/metabolismo , Envelhecimento/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Transporte Biológico , Caenorhabditis elegans/ultraestrutura , Proteínas de Caenorhabditis elegans/metabolismo , Cílios/metabolismo , Cílios/ultraestrutura , Dineínas/química , Dineínas/genética , Testes Genéticos , Humanos , Modelos Biológicos , Mutação/genética , TemperaturaRESUMO
Cilia are thought to harbour a membrane diffusion barrier within their transition zone (TZ) that compartmentalises signalling proteins. How this "ciliary gate" assembles and functions remains largely unknown. Contrary to current models, we present evidence that Caenorhabditis elegans MKS-5 (orthologue of mammalian Mks5/Rpgrip1L/Nphp8 and Rpgrip1) may not be a simple structural scaffold for anchoring > 10 different proteins at the TZ, but instead, functions as an assembly factor. This activity is needed to form TZ ultrastructure, which comprises Y-shaped axoneme-to-membrane connectors. Coiled-coil and C2 domains within MKS-5 enable TZ localisation and functional interactions with two TZ modules, consisting of Meckel syndrome (MKS) and nephronophthisis (NPHP) proteins. Discrete roles for these modules at basal body-associated transition fibres and TZ explain their redundant functions in making essential membrane connections and thus sealing the ciliary compartment. Furthermore, MKS-5 establishes a ciliary zone of exclusion (CIZE) at the TZ that confines signalling proteins, including GPCRs and NPHP-2/inversin, to distal ciliary subdomains. The TZ/CIZE, potentially acting as a lipid gate, limits the abundance of the phosphoinositide PIP2 within cilia and is required for cell signalling. Together, our findings suggest a new model for Mks5/Rpgrip1L in TZ assembly and function that is essential for establishing the ciliary signalling compartment.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Estruturas da Membrana Celular/metabolismo , Cílios/metabolismo , Modelos Biológicos , Transdução de Sinais/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/genética , Estruturas da Membrana Celular/ultraestrutura , Cílios/ultraestrutura , Fluorescência , Técnicas de Inativação de Genes , Genótipo , Microscopia Eletrônica de Transmissão , Mutação de Sentido Incorreto/genética , Reação em Cadeia da PolimeraseRESUMO
Cilia have a unique diffusion barrier ("gate") within their proximal region, termed transition zone (TZ), that compartmentalises signalling proteins within the organelle. The TZ is known to harbour two functional modules/complexes (Meckel syndrome [MKS] and Nephronophthisis [NPHP]) defined by genetic interaction, interdependent protein localisation (hierarchy), and proteomic studies. However, the composition and molecular organisation of these modules and their links to human ciliary disease are not completely understood. Here, we reveal Caenorhabditis elegans CEP-290 (mammalian Cep290/Mks4/Nphp6 orthologue) as a central assembly factor that is specific for established MKS module components and depends on the coiled coil region of MKS-5 (Rpgrip1L/Rpgrip1) for TZ localisation. Consistent with a critical role in ciliary gate function, CEP-290 prevents inappropriate entry of membrane-associated proteins into cilia and keeps ARL-13 (Arl13b) from leaking out of cilia via the TZ. We identify a novel MKS module component, TMEM-218 (Tmem218), that requires CEP-290 and other MKS module components for TZ localisation and functions together with the NPHP module to facilitate ciliogenesis. We show that TZ localisation of TMEM-138 (Tmem138) and CDKL-1 (Cdkl1/Cdkl2/Cdkl3/Cdlk4 related), not previously linked to a specific TZ module, similarly depends on CEP-290; surprisingly, neither TMEM-138 or CDKL-1 exhibit interdependent localisation or genetic interactions with core MKS or NPHP module components, suggesting they are part of a distinct, CEP-290-associated module. Lastly, we show that families presenting with Oral-Facial-Digital syndrome type 6 (OFD6) have likely pathogenic mutations in CEP-290-dependent TZ proteins, namely Tmem17, Tmem138, and Tmem231. Notably, patient fibroblasts harbouring mutated Tmem17, a protein not yet ciliopathy-associated, display ciliogenesis defects. Together, our findings expand the repertoire of MKS module-associated proteins--including the previously uncharacterised mammalian Tmem80--and suggest an MKS-5 and CEP-290-dependent assembly pathway for building a functional TZ.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Cílios/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Quinases Ciclina-Dependentes/metabolismo , Humanos , Proteínas de Membrana/genética , Dados de Sequência Molecular , Síndromes Orofaciodigitais/genéticaRESUMO
The majority of cilia are formed and maintained by the highly conserved process of intraflagellar transport (IFT). Mutations in IFT genes lead to ciliary structural defects and systemic disorders termed ciliopathies. Here we show that the severely truncated sensory cilia of hypomorphic IFT mutants in C. elegans transiently elongate during a discrete period of adult aging leading to markedly improved sensory behaviors. Age-dependent restoration of cilia morphology occurs in structurally diverse cilia types and requires IFT. We demonstrate that while DAF-16/FOXO is dispensable, the age-dependent suppression of cilia phenotypes in IFT mutants requires cell-autonomous functions of the HSF1 heat shock factor and the Hsp90 chaperone. Our results describe an unexpected role of early aging and protein quality control mechanisms in suppressing ciliary phenotypes of IFT mutants, and suggest possible strategies for targeting subsets of ciliopathies.
Assuntos
Proteínas de Caenorhabditis elegans/genética , Cílios/genética , Fatores de Transcrição Forkhead/genética , Proteínas de Choque Térmico HSP90/genética , Fatores de Transcrição/genética , Envelhecimento/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/biossíntese , Cílios/metabolismo , Ciliopatias/genética , Ciliopatias/terapia , Fatores de Transcrição Forkhead/biossíntese , Proteínas de Choque Térmico HSP90/biossíntese , Humanos , Microtúbulos/genética , Microtúbulos/metabolismo , Chaperonas Moleculares/genética , Mutação , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição/biossínteseRESUMO
Primary cilia are specialised sensory and developmental signalling devices extending from the surface of most eukaryotic cells. Defects in these organelles cause inherited human disorders (ciliopathies) such as retinitis pigmentosa and Bardet-Biedl syndrome (BBS), frequently affecting many physiological and developmental processes across multiple organs. Cilium formation, maintenance and function depend on intracellular transport systems such as intraflagellar transport (IFT), which is driven by kinesin-2 and IFT-dynein motors and regulated by the Bardet-Biedl syndrome (BBS) cargo-adaptor protein complex, or BBSome. To identify new cilium-associated genes, we employed the nematode C. elegans, where ciliogenesis occurs within a short timespan during late embryogenesis when most sensory neurons differentiate. Using whole-organism RNA-Seq libraries, we discovered a signature expression profile highly enriched for transcripts of known ciliary proteins, including FAM-161 (FAM161A orthologue), CCDC-104 (CCDC104), and RPI-1 (RP1/RP1L1), which we confirm are cilium-localised in worms. From a list of 185 candidate ciliary genes, we uncover orthologues of human MAP9, YAP, CCDC149, and RAB28 as conserved cilium-associated components. Further analyses of C. elegans RAB-28, recently associated with autosomal-recessive cone-rod dystrophy, reveal that this small GTPase is exclusively expressed in ciliated neurons where it dynamically associates with IFT trains. Whereas inactive GDP-bound RAB-28 displays no IFT movement and diffuse localisation, GTP-bound (activated) RAB-28 concentrates at the periciliary membrane in a BBSome-dependent manner and undergoes bidirectional IFT. Functional analyses reveal that whilst cilium structure, sensory function and IFT are seemingly normal in a rab-28 null allele, overexpression of predicted GDP or GTP locked variants of RAB-28 perturbs cilium and sensory pore morphogenesis and function. Collectively, our findings present a new approach for identifying ciliary proteins, and unveil RAB28, a GTPase most closely related to the BBS protein RABL4/IFT27, as an IFT-associated cargo with BBSome-dependent cell autonomous and non-autonomous functions at the ciliary base.
Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Cílios/genética , Desenvolvimento Embrionário/genética , GTP Fosfo-Hidrolases/genética , Proteínas rab de Ligação ao GTP/biossíntese , Animais , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/patologia , Caenorhabditis elegans/crescimento & desenvolvimento , Membrana Celular/genética , Cílios/metabolismo , Dendritos/genética , Dineínas/biossíntese , Dineínas/genética , Flagelos/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Cinesinas/biossíntese , Cinesinas/genética , Transporte Proteico/genética , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Células Receptoras Sensoriais/metabolismo , Proteínas rab de Ligação ao GTP/genéticaRESUMO
Skeletal dysplasias are a clinically and genetically heterogeneous group of bone and cartilage disorders. Whilst >450 skeletal dysplasias have been reported, 30% are genetically uncharacterized. We report two Irish Traveller families with a previously undescribed lethal skeletal dysplasia characterized by fetal akinesia, shortening of all long bones, multiple contractures, rib anomalies, thoracic dysplasia, pulmonary hypoplasia and protruding abdomen. Single nucleotide polymorphism homozygosity mapping and whole exome sequencing identified a novel homozygous stop-gain mutation in NEK9 (c.1489C>T; p.Arg497*) as the cause of this disorder. NEK9 encodes a never in mitosis gene A-related kinase involved in regulating spindle organization, chromosome alignment, cytokinesis and cell cycle progression. This is the first disorder to be associated with NEK9 in humans. Analysis of NEK9 protein expression and localization in patient fibroblasts showed complete loss of full-length NEK9 (107 kDa). Functional characterization of patient fibroblasts showed a significant reduction in cell proliferation and a delay in cell cycle progression. We also provide evidence to support possible ciliary associations for NEK9. Firstly, patient fibroblasts displayed a significant reduction in cilia number and length. Secondly, we show that the NEK9 orthologue in Caenorhabditis elegans, nekl-1, is almost exclusively expressed in a subset of ciliated cells, a strong indicator of cilia-related functions. In summary, we report the clinical and molecular characterization of a lethal skeletal dysplasia caused by NEK9 mutation and suggest that this disorder may represent a novel ciliopathy.
Assuntos
Ciclo Celular/fisiologia , Cílios/patologia , Genes Recessivos/genética , Mutação/genética , Quinases Relacionadas a NIMA/genética , Osteocondrodisplasias/etiologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Lactente , Masculino , Osteocondrodisplasias/patologia , Linhagem , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Oral-facial-digital syndromes (OFDS) gather rare genetic disorders characterised by facial, oral and digital abnormalities associated with a wide range of additional features (polycystic kidney disease, cerebral malformations and several others) to delineate a growing list of OFDS subtypes. The most frequent, OFD type I, is caused by a heterozygous mutation in the OFD1 gene encoding a centrosomal protein. The wide clinical heterogeneity of OFDS suggests the involvement of other ciliary genes. For 15 years, we have aimed to identify the molecular bases of OFDS. This effort has been greatly helped by the recent development of whole-exome sequencing (WES). Here, we present all our published and unpublished results for WES in 24 cases with OFDS. We identified causal variants in five new genes (C2CD3, TMEM107, INTU, KIAA0753 and IFT57) and related the clinical spectrum of four genes in other ciliopathies (C5orf42, TMEM138, TMEM231 and WDPCP) to OFDS. Mutations were also detected in two genes previously implicated in OFDS. Functional studies revealed the involvement of centriole elongation, transition zone and intraflagellar transport defects in OFDS, thus characterising three ciliary protein modules: the complex KIAA0753-FOPNL-OFD1, a regulator of centriole elongation; the Meckel-Gruber syndrome module, a major component of the transition zone; and the CPLANE complex necessary for IFT-A assembly. OFDS now appear to be a distinct subgroup of ciliopathies with wide heterogeneity, which makes the initial classification obsolete. A clinical classification restricted to the three frequent/well-delineated subtypes could be proposed, and for patients who do not fit one of these three main subtypes, a further classification could be based on the genotype.
Assuntos
Face/anormalidades , Síndromes Orofaciodigitais/genética , Anormalidades Múltiplas/genética , Transtornos da Motilidade Ciliar/genética , Encefalocele/genética , Feminino , Heterozigoto , Humanos , Masculino , Mutação/genética , Doenças Renais Policísticas/genética , Proteínas/genética , Retinose PigmentarRESUMO
Mutations in genes encoding cilia proteins cause human ciliopathies, diverse disorders affecting many tissues. Individual genes can be linked to ciliopathies with dramatically different phenotypes, suggesting that genetic modifiers may participate in their pathogenesis. The ciliary transition zone contains two protein complexes affected in the ciliopathies Meckel syndrome (MKS) and nephronophthisis (NPHP). The BBSome is a third protein complex, affected in the ciliopathy Bardet-Biedl syndrome (BBS). We tested whether mutations in MKS, NPHP and BBS complex genes modify the phenotypic consequences of one another in both C. elegans and mice. To this end, we identified TCTN-1, the C. elegans ortholog of vertebrate MKS complex components called Tectonics, as an evolutionarily conserved transition zone protein. Neither disruption of TCTN-1 alone or together with MKS complex components abrogated ciliary structure in C. elegans. In contrast, disruption of TCTN-1 together with either of two NPHP complex components, NPHP-1 or NPHP-4, compromised ciliary structure. Similarly, disruption of an NPHP complex component and the BBS complex component BBS-5 individually did not compromise ciliary structure, but together did. As in nematodes, disrupting two components of the mouse MKS complex did not cause additive phenotypes compared to single mutants. However, disrupting both Tctn1 and either Nphp1 or Nphp4 exacerbated defects in ciliogenesis and cilia-associated developmental signaling, as did disrupting both Tctn1 and the BBSome component Bbs1. Thus, we demonstrate that ciliary complexes act in parallel to support ciliary function and suggest that human ciliopathy phenotypes are altered by genetic interactions between different ciliary biochemical complexes.
Assuntos
Cílios/genética , Transdução de Sinais , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cílios/metabolismo , HumanosRESUMO
The structure and function of primary cilia are critically dependent on intracellular trafficking pathways that transport ciliary membrane and protein components. The mechanisms by which these trafficking pathways are regulated are not fully characterized. Here we identify the transmembrane protein OSTA-1 as a new regulator of the trafficking pathways that shape the morphology and protein composition of sensory cilia in C. elegans. osta-1 encodes an organic solute transporter alpha-like protein, mammalian homologs of which have been implicated in membrane trafficking and solute transport, although a role in regulating cilia structure has not previously been demonstrated. We show that mutations in osta-1 result in altered ciliary membrane volume, branch length and complexity, as well as defects in localization of a subset of ciliary transmembrane proteins in different sensory cilia types. OSTA-1 is associated with transport vesicles, localizes to a ciliary compartment shown to house trafficking proteins, and regulates both retrograde and anterograde flux of the endosome-associated RAB-5 small GTPase. Genetic epistasis experiments with sensory signaling, exocytic and endocytic proteins further implicate OSTA-1 as a crucial regulator of ciliary architecture via regulation of cilia-destined trafficking. Our findings suggest that regulation of transport pathways in a cell type-specific manner contributes to diversity in sensory cilia structure and might allow dynamic remodeling of ciliary architecture via multiple inputs.
Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans , Cílios/genética , Membranas Intracelulares/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Animais , Animais Geneticamente Modificados , Transporte Biológico/genética , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cílios/fisiologia , Cílios/ultraestrutura , Embrião não Mamífero , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Redes e Vias Metabólicas/genética , Modelos Biológicos , Neurônios/metabolismo , Neurônios/fisiologia , Neurônios/ultraestrutura , Tamanho do Órgão/genéticaRESUMO
Cilia are microtubule-based cell appendages, serving motility, chemo-/mechano-/photo- sensation, and developmental signaling functions. Cilia are comprised of distinct structural and functional subregions including the basal body, transition zone (TZ) and inversin (Inv) compartments, and defects in this organelle are associated with an expanding spectrum of inherited disorders including Bardet-Biedl syndrome (BBS), Meckel-Gruber Syndrome (MKS), Joubert Syndrome (JS) and Nephronophthisis (NPHP). Despite major advances in understanding ciliary trafficking pathways such as intraflagellar transport (IFT), how proteins are transported to subciliary membranes remains poorly understood. Using Caenorhabditis elegans and mammalian cells, we investigated the transport mechanisms underlying compartmentalization of JS-associated ARL13B/ARL-13, which we previously found is restricted at proximal ciliary membranes. We now show evolutionary conservation of ARL13B/ARL-13 localisation to an Inv-like subciliary membrane compartment, excluding the TZ, in many C. elegans ciliated neurons and in a subset of mammalian ciliary subtypes. Compartmentalisation of C. elegans ARL-13 requires a C-terminal RVVP motif and membrane anchoring to prevent distal cilium and nuclear targeting, respectively. Quantitative imaging in more than 20 mutants revealed differential contributions for IFT and ciliopathy modules in defining the ARL-13 compartment; IFT-A/B, IFT-dynein and BBS genes prevent ARL-13 accumulation at periciliary membranes, whereas MKS/NPHP modules additionally inhibit ARL-13 association with TZ membranes. Furthermore, in vivo FRAP analyses revealed distinct roles for IFT and MKS/NPHP genes in regulating a TZ barrier to ARL-13 diffusion, and intraciliary ARL-13 diffusion. Finally, C. elegans ARL-13 undergoes IFT-like motility and quantitative protein complex analysis of human ARL13B identified functional associations with IFT-B complexes, mapped to IFT46 and IFT74 interactions. Together, these findings reveal distinct requirements for sequence motifs, IFT and ciliopathy modules in defining an ARL-13 subciliary membrane compartment. We conclude that MKS/NPHP modules comprise a TZ barrier to ARL-13 diffusion, whereas IFT genes predominantly facilitate ARL-13 ciliary entry and/or retention via active transport mechanisms.
Assuntos
Fatores de Ribosilação do ADP/genética , Caenorhabditis elegans/genética , Doenças Cerebelares/genética , Cílios/genética , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Retina/anormalidades , Fatores de Ribosilação do ADP/metabolismo , Anormalidades Múltiplas , Animais , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/patologia , Transporte Biológico Ativo/genética , Caenorhabditis elegans/metabolismo , Doenças Cerebelares/patologia , Cerebelo/anormalidades , Cílios/metabolismo , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/patologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Encefalocele/genética , Encefalocele/patologia , Anormalidades do Olho/patologia , Humanos , Doenças Renais Císticas/patologia , Membranas/metabolismo , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/patologia , Retina/patologia , Retinose Pigmentar , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Joubert syndrome related disorders (JSRDs) have broad but variable phenotypic overlap with other ciliopathies. The molecular etiology of this overlap is unclear but probably arises from disrupting common functional module components within primary cilia. To identify additional module elements associated with JSRDs, we performed homozygosity mapping followed by next-generation sequencing (NGS) and uncovered mutations in TMEM237 (previously known as ALS2CR4). We show that loss of the mammalian TMEM237, which localizes to the ciliary transition zone (TZ), results in defective ciliogenesis and deregulation of Wnt signaling. Furthermore, disruption of Danio rerio (zebrafish) tmem237 expression produces gastrulation defects consistent with ciliary dysfunction, and Caenorhabditis elegans jbts-14 genetically interacts with nphp-4, encoding another TZ protein, to control basal body-TZ anchoring to the membrane and ciliogenesis. Both mammalian and C. elegans TMEM237/JBTS-14 require RPGRIP1L/MKS5 for proper TZ localization, and we demonstrate additional functional interactions between C. elegans JBTS-14 and MKS-2/TMEM216, MKSR-1/B9D1, and MKSR-2/B9D2. Collectively, our findings integrate TMEM237/JBTS-14 in a complex interaction network of TZ-associated proteins and reveal a growing contribution of a TZ functional module to the spectrum of ciliopathy phenotypes.
Assuntos
Doenças Cerebelares/genética , Cílios/genética , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Proteínas de Membrana/genética , Mutação , Anormalidades Múltiplas , Adulto , Animais , Síndrome de Bardet-Biedl/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/ultraestrutura , Estudos de Casos e Controles , Linhagem Celular , Cerebelo/anormalidades , Criança , Pré-Escolar , Mapeamento Cromossômico , Cílios/metabolismo , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Estudos de Associação Genética , Haplótipos , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Complexos Multiproteicos/metabolismo , Polimorfismo de Nucleotídeo Único , Retina/anormalidades , Análise de Sequência de DNA , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Peixe-Zebra/embriologia , Peixe-Zebra/genéticaRESUMO
Both the basal body and the microtubule-based axoneme it nucleates have evolutionarily conserved subdomains crucial for cilium biogenesis, function and maintenance. Here, we focus on two conspicuous but underappreciated regions of these structures that make membrane connections. One is the basal body distal end, which includes transition fibres of largely undefined composition that link to the base of the ciliary membrane. Transition fibres seem to serve as docking sites for intraflagellar transport particles, which move proteins within the ciliary compartment and are required for cilium biogenesis and sustained function. The other is the proximal-most region of the axoneme, termed the transition zone, which is characterized by Y-shaped linkers that span from the axoneme to the ciliary necklace on the membrane surface. The transition zone comprises a growing number of ciliopathy proteins that function as modular components of a ciliary gate. This gate, which forms early during ciliogenesis, might function in part by regulating intraflagellar transport. Together with a recently described septin ring diffusion barrier at the ciliary base, the transition fibres and transition zone deserve attention for their varied roles in forming functional ciliary compartments.
Assuntos
Axonema/metabolismo , Cílios/fisiologia , Proteínas do Citoesqueleto/metabolismo , Animais , Axonema/química , Axonema/ultraestrutura , Compartimento Celular , Cílios/química , Cílios/ultraestrutura , Corrente Citoplasmática , HumanosRESUMO
Primary cilia act as cell surface antennae, coordinating cellular responses to sensory inputs and signalling molecules that regulate developmental and homeostatic pathways. Cilia are therefore critical to physiological processes, and defects in ciliary components are associated with a large group of inherited pleiotropic disorders - known collectively as ciliopathies - that have a broad spectrum of phenotypes and affect many or most tissues, including the kidney. A central feature of the cilium is its compartmentalized structure, which imparts its unique molecular composition and signalling environment despite its membrane and cytosol being contiguous with those of the cell. Such compartmentalization is achieved via active transport pathways that bring protein cargoes to and from the cilium, as well as gating pathways at the ciliary base that establish diffusion barriers to protein exchange into and out of the organelle. Many ciliopathy-linked proteins, including those involved in kidney development and homeostasis, are components of the compartmentalizing machinery. New insights into the major compartmentalizing pathways at the cilium, namely, ciliary gating, intraflagellar transport, lipidated protein flagellar transport and ciliary extracellular vesicle release pathways, have improved our understanding of the mechanisms that underpin ciliary disease and associated renal disorders.
Assuntos
Ciliopatias , Humanos , Ciliopatias/metabolismo , Transporte Biológico , Transporte Proteico , Cílios/metabolismo , Membrana Celular/metabolismoRESUMO
TMEM67 mutations are the major cause of Meckel-Gruber syndrome. TMEM67 is involved in both ciliary transition zone assembly, and non-canonical Wnt signaling mediated by its extracellular domain. How TMEM67 performs these two separate functions is not known. We identify a novel cleavage motif in the extracellular domain of TMEM67 cleaved by the extracellular matrix metalloproteinase ADAMTS9. This cleavage regulates the abundance of two functional forms: A C-terminal portion which localizes to the ciliary transition zone regulating ciliogenesis, and a non-cleaved form which regulates Wnt signaling. By characterizing three TMEM67 ciliopathy patient variants within the cleavage motif utilizing mammalian cell culture and C. elegans, we show the cleavage motif is essential for cilia structure and function, highlighting its clinical significance. We generated a novel non-cleavable TMEM67 mouse model which develop severe ciliopathies phenocopying Tmem67 -/- mice, but in contrast, undergo normal Wnt signaling, substantiating the existence of two functional forms of TMEM67.