Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 282, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454015

RESUMO

The increasing rate of carbapenem-resistant bacteria within healthcare environments is an issue of great concern that needs urgent attention. This resistance is driven by metallo-ß-lactamases (MBLs), which can catalyse the hydrolysis of almost all clinically available ß-lactams and are resistant to all the clinically utilized ß-lactamase inhibitors. In this study, an uncharacterized MBL is identified in a multidrug resistant isolate of the opportunistic pathogen, Chryseobacterium indologenes. Sequence analysis predicts this MBL (CIM-1) to be a lipoprotein with an atypical lipobox. Characterization of CIM-1 reveals it to be a high-affinity carbapenemase with a broad spectrum of activity that includes all cephalosporins and carbapenems. Results also shown that CIM-1 is potentially a membrane-associated MBL with an uncharacterized lipobox. Using prediction tools, we also identify more potentially lipidated MBLs with non-canonical lipoboxes highlighting the necessity of further investigation of lipidated MBLs.


Assuntos
Antibacterianos , Fatores R , Antibacterianos/farmacologia , beta-Lactamases/genética , Proteínas de Bactérias/genética
2.
Microbiologyopen ; 13(3): e1409, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38682784

RESUMO

Stenotrophomonas maltophilia is a multidrug-resistant (MDR), Gram-negative bacterium intrinsically resistant to beta-lactams, including last-resort carbapenems. As an opportunistic pathogen, it can cause serious healthcare-related infections. This study assesses the prevalence, resistance profiles, and genetic diversity of S. maltophilia isolated from residential aged care facilities (RACFs). RACFs are known for their overuse and often inappropriate use of antibiotics, creating a strong selective environment that favors the development of bacterial resistance. The study was conducted on 73 S. maltophilia isolates recovered from wastewater and facility swab samples obtained from three RACFs and a retirement village. Phenotypic and genotypic assessments of the isolates revealed high carbapenem resistance, exemplifying their intrinsic beta-lactam resistance. Alarmingly, 49.3% (36/73) of the isolates were non-wild type for colistin, with minimum inhibitory concentration values of > 4 mg/L, and 11.0% (8/73) were resistant to trimethoprim-sulfamethoxazole. No resistance mechanisms were detected for either antimicrobial. Genotypic assessment of known lineages revealed isolates clustering with Sm17 and Sm18, lineages not previously reported in Australia, suggesting the potential ongoing spread of MDR S. maltophilia. Lastly, although only a few isolates were biocide tolerant (2.7%, 2/73), their ability to grow in high concentrations (64 mg/L) of triclosan is concerning, as it may be selecting for their survival and continued dissemination.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Infecções por Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Stenotrophomonas maltophilia , Stenotrophomonas maltophilia/efeitos dos fármacos , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/isolamento & purificação , Stenotrophomonas maltophilia/classificação , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Antibacterianos/farmacologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/epidemiologia , Genótipo , Austrália , Águas Residuárias/microbiologia , Prevalência , Variação Genética , Colistina/farmacologia , Carbapenêmicos/farmacologia , Idoso , Instituições Residenciais
3.
Microorganisms ; 12(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38674695

RESUMO

Antimicrobial-resistant Klebsiella pneumoniae is one of the predominant pathogens in healthcare settings. However, the prevalence and resistome of this organism within residential aged care facilities (RACFs), which are potential hotspots for antimicrobial resistance, remain unexplored. Here, we provide a phenotypic and molecular characterization of antimicrobial-resistant K. pneumoniae isolated from RACFs. K. pneumoniae was isolated from urine, faecal and wastewater samples and facility swabs. The antimicrobial susceptibility profiles of all the isolates were determined and the genomic basis for resistance was explored with whole-genome sequencing on a subset of isolates. A total of 147 K. pneumoniae were isolated, displaying resistance against multiple antimicrobials. Genotypic analysis revealed the presence of beta-lactamases and the ciprofloxacin-resistance determinant QnrB4 but failed to confirm the basis for the observed cephalosporin resistance. Clonal spread of the multidrug-resistant, widely disseminated sequence types 323 and 661 was observed. This study was the first to examine the resistome of K. pneumoniae isolates from RACFs and demonstrated a complexity between genotypic and phenotypic antimicrobial resistance. The intra-facility dissemination and persistence of multidrug-resistant clones is concerning, given that residents are particularly vulnerable to antimicrobial resistant infections, and it highlights the need for continued surveillance and interventions to reduce the risk of outbreaks.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa