Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 110(2): 025302, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23383912

RESUMO

We have observed well-defined phase slips between quantized persistent current states around a toroidal atomic (23Na) Bose-Einstein condensate. These phase slips are induced by a weak link (a localized region of reduced superfluid density) rotated slowly around the ring. This is analogous to the behavior of a superconducting loop with a weak link in the presence of an external magnetic field. When the weak link is rotated more rapidly, well-defined phase slips no longer occur, and vortices enter into the bulk of the condensate. A noteworthy feature of this system is the ability to dynamically vary the current-phase relation of the weak link, a feature which is difficult to implement in superconducting or superfluid helium circuits.

2.
Nature ; 443(7113): 838-41, 2006 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17051214

RESUMO

Entanglement is a necessary resource for quantum applications--entanglement established between quantum systems at different locations enables private communication and quantum teleportation, and facilitates quantum information processing. Distributed entanglement is established by preparing an entangled pair of quantum particles in one location, and transporting one member of the pair to another location. However, decoherence during transport reduces the quality (fidelity) of the entanglement. A protocol to achieve entanglement 'purification' has been proposed to improve the fidelity after transport. This protocol uses separate quantum operations at each location and classical communication to distil high-fidelity entangled pairs from lower-fidelity pairs. Proof-of-principle experiments distilling entangled photon pairs have been carried out. However, these experiments obtained distilled pairs with a low probability of success and required destruction of the entangled pairs, rendering them unavailable for further processing. Here we report efficient and non-destructive entanglement purification with atomic quantum bits. Two noisy entangled pairs were created and distilled into one higher-fidelity pair available for further use. Success probabilities were above 35 per cent. The many applications of entanglement purification make it one of the most important techniques in quantum information processing.

3.
Nature ; 438(7068): 639-42, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16319885

RESUMO

Among the classes of highly entangled states of multiple quantum systems, the so-called 'Schrödinger cat' states are particularly useful. Cat states are equal superpositions of two maximally different quantum states. They are a fundamental resource in fault-tolerant quantum computing and quantum communication, where they can enable protocols such as open-destination teleportation and secret sharing. They play a role in fundamental tests of quantum mechanics and enable improved signal-to-noise ratios in interferometry. Cat states are very sensitive to decoherence, and as a result their preparation is challenging and can serve as a demonstration of good quantum control. Here we report the creation of cat states of up to six atomic qubits. Each qubit's state space is defined by two hyperfine ground states of a beryllium ion; the cat state corresponds to an entangled equal superposition of all the atoms in one hyperfine state and all atoms in the other hyperfine state. In our experiments, the cat states are prepared in a three-step process, irrespective of the number of entangled atoms. Together with entangled states of a different class created in Innsbruck, this work represents the current state-of-the-art for large entangled states in any qubit system.

4.
Nature ; 432(7017): 602-5, 2004 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-15577904

RESUMO

Scalable quantum computation and communication require error control to protect quantum information against unavoidable noise. Quantum error correction protects information stored in two-level quantum systems (qubits) by rectifying errors with operations conditioned on the measurement outcomes. Error-correction protocols have been implemented in nuclear magnetic resonance experiments, but the inherent limitations of this technique prevent its application to quantum information processing. Here we experimentally demonstrate quantum error correction using three beryllium atomic-ion qubits confined to a linear, multi-zone trap. An encoded one-qubit state is protected against spin-flip errors by means of a three-qubit quantum error-correcting code. A primary ion qubit is prepared in an initial state, which is then encoded into an entangled state of three physical qubits (the primary and two ancilla qubits). Errors are induced simultaneously in all qubits at various rates. The encoded state is decoded back to the primary ion one-qubit state, making error information available on the ancilla ions, which are separated from the primary ion and measured. Finally, the primary qubit state is corrected on the basis of the ancillae measurement outcome. We verify error correction by comparing the corrected final state to the uncorrected state and to the initial state. In principle, the approach enables a quantum state to be maintained by means of repeated error correction, an important step towards scalable fault-tolerant quantum computation using trapped ions.

5.
Phys Rev Lett ; 102(15): 153002, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19518628

RESUMO

We report reliable transport of (9)Be(+) ions through an "X junction" in a 2D trap array that includes a separate loading and reservoir zone. During transport the ion's kinetic energy in its local well increases by only a few motional quanta and internal-state coherences are preserved. We also examine two sources of energy gain during transport: a particular radio-frequency noise heating mechanism and digital sampling noise. Such studies are important to achieve scaling in a trapped-ion quantum information processor.

6.
Phys Rev Lett ; 96(25): 253003, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16907302

RESUMO

Individual laser-cooled 24Mg+ ions are confined in a linear Paul trap with a novel geometry where gold electrodes are located in a single plane and the ions are trapped 40 microm above this plane. The relatively simple trap design and fabrication procedure are important for large-scale quantum information processing (QIP) using ions. Measured ion motional frequencies are compared to simulations. Measurements of ion recooling after cooling is temporarily suspended yield a heating rate of approximately 5 motional quanta per millisecond for a trap frequency of 2.83 MHz, sufficiently low to be useful for QIP.

7.
Science ; 308(5724): 997-1000, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15890877

RESUMO

We report the implementation of the semiclassical quantum Fourier transform in a system of three beryllium ion qubits (two-level quantum systems) confined in a segmented multizone trap. The quantum Fourier transform is the crucial final step in Shor's algorithm, and it acts on a register of qubits to determine the periodicity of the quantum state's amplitudes. Because only probability amplitudes are required for this task, a more efficient semiclassical version can be used, for which only single-qubit operations conditioned on measurement outcomes are required. We apply the transform to several input states of different periodicities; the results enable the location of peaks corresponding to the original periods. This demonstration incorporates the key elements of a scalable ion-trap architecture, suggesting the future capability of applying the quantum Fourier transform to a large number of qubits as required for a useful quantum factoring algorithm.

8.
Phys Rev Lett ; 95(6): 060502, 2005 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-16090932

RESUMO

We demonstrate experimentally a robust quantum memory using a magnetic-field-independent hyperfine transition in 9Be+ atomic ion qubits at a magnetic field B approximately = 0.01194 T. We observe that the single physical qubit memory coherence time is greater than 10 s, an improvement of approximately 5 orders of magnitude from previous experiments with 9Be+. We also observe long coherence times of decoherence-free subspace logical qubits comprising two entangled physical qubits and discuss the merits of each type of qubit.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa