Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 23(46): 465602, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23095344

RESUMO

A great number of works have focused their research on the synthesis, design and optical properties of gold nanoparticles for potential biological applications (bioimaging, biosensing). For this kind of application, sharp gold nanostructures appear to exhibit the more interesting features since their surface plasmon bands are very sensitive to the surrounding medium. In this paper, a complete study of PEGylated gold nanostars and PEGylated bipyramidal-like nanostructures is presented. The nanoparticles are prepared in high yield and their surfaces are covered with a biocompatible polymer. The photophysical properties of gold bipyramids and nanostars, in suspension, are correlated with the optical response of single and isolated objects. The resulting spectra of isolated gold nanoparticles are subsequently correlated to their geometrical structure by transmission electron microscopy. Finally, the PEGylated gold nanoparticles were incubated with melanoma B16-F10 cells. Dark-field microscopy showed that the biocompatible gold nanoparticles were easily internalized and most of them localized within the cells.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Animais , Linhagem Celular Tumoral , Cetrimônio , Compostos de Cetrimônio/química , Endocitose , Ouro/farmacocinética , Histocitoquímica , Teste de Materiais , Camundongos , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Polietilenoglicóis/química , Compostos de Amônio Quaternário/química , Espectrofotometria Ultravioleta , Tensoativos/química
2.
Nanoscale Res Lett ; 9(1): 94, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24565261

RESUMO

Silicon nanoparticles (Si NPs) with a diameter size ranging from 4 to 8 nm were successfully fabricated. They exhibit a visible photoluminescence (PL) due to the quantum confinement effect. Chemical functionalization of these Si NPs with alkyl groups allowed to homogeneously disperse them in nonpolar liquids (NPLs). In comparison to most of literature results for Si NPs, an important PL peak position variation with temperature (almost 1 meV/K) was obtained from 303 to 390 K. The influence of the liquid viscosity on the peak positions is also presented. These variations are discussed considering energy transfer between nanoparticles. The high PL thermal sensitivity of the alkyl-capped Si NPs paves the way for their future application as nanothermometers.

3.
Langmuir ; 23(11): 6424-30, 2007 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-17439261

RESUMO

We report a detailed study of the interaction between surface-oxidized multiwall carbon nanotubes (o-MWCNTs) and the molecular semiconductor tetrasulfonate copper phthalocyanine (TS-CuPc). Concentrated dispersions of o-MWCNT in aqueous solutions of TS-CuPc are stable toward nanotube flocculation and exhibit spontaneous nanostructuring upon rapid drying. In addition to hydrogen-bonding interactions, the compatibility between the two components is shown to result from a ground-state charge-transfer interaction with partial charge transfer from o-MWCNT to TS-CuPc molecules orientated such that the plane of the macrocycle is parallel to the nanotube surface. The electronegativity of TS-CuPc as compared to unsubsubtituted copper phthalocyanine is shown to result from the electron-withdrawing character of the sulfonate substituents, which increase the molecular ionization potential and promote cofacial molecular aggregation upon drying. Upon spin casting to form uniform thin films, the experimental evidence is consistent with an o-MWCNT scaffold decorated with phthalocyanine molecules self-assembled into extended aggregates reminiscent of 1-D linearly stacked phthalocyanine polymers. Remarkably, this self-organization occurs in a fraction of a second during the spin-coating process. To demonstrate the potential utility of this hybrid material, it is successfully incorporated into a model organic photovoltaic cell at the interface between a poly(3-hexylthiophene):[6,6]-phenyl-C61 butyric acid methyl ester bulk heterojunction layer and an indium-tin oxide-coated glass electrode to increase the light-harvesting capability of the device and facilitate hole extraction. The resulting enhancement in power conversion efficiency is rationalized in terms of the electronic, optical, and morphological properties of the nanostructured thin film.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa