Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 381(2242): 20210225, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36587816

RESUMO

The dithering H-mode phase, characterized by oscillations, is generally observed at input power values close to the L-H transition power threshold and low plasma collisionalities (low electron density and/or high plasma temperature). Measurements to characterize the dithering phase are presented for the low aspect ratio, high magnetic field tokamak, ST40. The dithering phase oscillation frequency is observed between 400 and 800 Hz and demonstrates an inverse relationship with core plasma density. Dithering phase H-modes are documented across a nonlinear, low-density power threshold operational space, with signature low- and high-density branches. The minimum power threshold for dithering H-mode access is measured at a core, line average electron density of 4.7(±0.5) × 1019 m-3, close to a predicted value of 4.1(±0.4) × 1019 m-3 from multi-machine studies. ASTRA calculated values of power coupled to the ion species, at the dithering H-mode transition, exhibit a similar nonlinear dependence on density. This analysis points to the important contribution of the ion thermal channel to the L-H phase transition. The low-frequency plasma density and D-alpha dithers appear to be accompanied by sudden bursts of magnetohydrodynamic (MHD) activity. A simple model is tested to demonstrate a possible scenario of self-regulation among turbulence, zonal flows, pressure (density) gradient and MHD activities. This article is part of a discussion meeting issue 'H-mode transition and pedestal studies in fusion plasmas'.

2.
Arch Dis Child ; 108(1): 26-30, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36171064

RESUMO

OBJECTIVE: INGR1D (INvestigating Genetic Risk for type 1 Diabetes) was a type 1 diabetes (T1D) genetic screening study established to identify participants for a primary prevention trial (POInT, Primary Oral Insulin Trial). METHODS: The majority of participants were recruited by research midwives in antenatal clinics from 18 weeks' gestation. Using the NHS Newborn Bloodspot Screening Programme (NBSP) infrastructure, participants enrolled in INGR1D had an extra sample taken from their day 5 bloodspot card sent for T1D genetic screening. Those at an increased risk of T1D were informed of the result, given education about T1D and the opportunity to take part in POInT. RESULTS: Between April 2018 and November 2020, 66% of women approached about INGR1D chose to participate. 15 660 babies were enrolled into INGR1D and 14 731 blood samples were processed. Of the processed samples, 157 (1%) had confirmed positive results, indicating an increased risk of T1D, of whom a third (n=49) enrolled into POInT (20 families were unable to participate in POInT due to COVID-19 lockdown restrictions). CONCLUSION: The use of prospective consent to perform personalised genetic testing on samples obtained through the routine NBSP represents a novel mechanism for clinical genetic research in the UK and provides a model for further population-based genetic studies in the newborn.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 1 , Recém-Nascido , Feminino , Humanos , Gravidez , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/genética , Estudos Prospectivos , Controle de Doenças Transmissíveis , Testes Genéticos , Consentimento Livre e Esclarecido , Reino Unido
3.
Med Phys ; 46(11): 5055-5074, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31494961

RESUMO

PURPOSE: Numerous image reconstruction methodologies for positron emission tomography (PET) have been developed that incorporate magnetic resonance (MR) imaging structural information, producing reconstructed images with improved suppression of noise and reduced partial volume effects. However, the influence of MR structural information also increases the possibility of suppression or bias of structures present only in the PET data (PET-unique regions). To address this, further developments for MR-informed methods have been proposed, for example, through inclusion of the current reconstructed PET image, alongside the MR image, in the iterative reconstruction process. In this present work, a number of kernel and maximum a posteriori (MAP) methodologies are compared, with the aim of identifying methods that enable a favorable trade-off between the suppression of noise and the retention of unique features present in the PET data. METHODS: The reconstruction methods investigated were: the MR-informed conventional and spatially compact kernel methods, referred to as KEM and KEM largest value sparsification (LVS) respectively; the MR-informed Bowsher and Gaussian MR-guided MAP methods; and the PET-MR-informed hybrid kernel and anato-functional MAP methods. The trade-off between improving the reconstruction of the whole brain region and the PET-unique regions was investigated for all methods in comparison with postsmoothed maximum likelihood expectation maximization (MLEM), evaluated in terms of structural similarity index (SSIM), normalized root mean square error (NRMSE), bias, and standard deviation. Both simulated BrainWeb (10 noise realizations) and real [18 F] fluorodeoxyglucose (FDG) three-dimensional datasets were used. The real [18 F]FDG dataset was augmented with simulated tumors to allow comparison of the reconstruction methodologies for the case of known regions of PET-MR discrepancy and evaluated at full counts (100%) and at a reduced (10%) count level. RESULTS: For the high-count simulated and real data studies, the anato-functional MAP method performed better than the other methods under investigation (MR-informed, PET-MR-informed and postsmoothed MLEM), in terms of achieving the best trade-off for the reconstruction of the whole brain and PET-unique regions, assessed in terms of the SSIM, NRMSE, and bias vs standard deviation. The inclusion of PET information in the anato-functional MAP method enables the reconstruction of PET-unique regions to attain similarly low levels of bias as unsmoothed MLEM, while moderately improving the whole brain image quality for low levels of regularization. However, for low count simulated datasets the anato-functional MAP method performs poorly, due to the inclusion of noisy PET information in the regularization term. For the low counts simulated dataset, KEM LVS and to a lesser extent, HKEM performed better than the other methods under investigation in terms of achieving the best trade-off for the reconstruction of the whole brain and PET-unique regions, assessed in terms of the SSIM, NRMSE, and bias vs standard deviation. CONCLUSION: For the reconstruction of noisy data, multiple MR-informed methods produce favorable whole brain vs PET-unique region trade-off in terms of the image quality metrics of SSIM and NRMSE, comfortably outperforming the whole image denoising of postsmoothed MLEM.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Fluordesoxiglucose F18 , Humanos
4.
IEEE Trans Radiat Plasma Med Sci ; 2(3): 235-243, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29978142

RESUMO

PET image reconstruction is highly susceptible to the impact of Poisson noise, and if shorter acquisition times or reduced injected doses are used, the noisy PET data become even more limiting. The recent development of kernel expectation maximisation (KEM) is a simple way to reduce noise in PET images, and we show in this work that impressive dose reduction can be achieved when the kernel method is used with MR-derived kernels. The kernel method is shown to surpass maximum likelihood expectation maximisation (MLEM) for the reconstruction of low-count datasets (corresponding to those obtained at reduced injected doses) producing visibly clearer reconstructions for unsmoothed and smoothed images, at all count levels. The kernel EM reconstruction of 10% of the data had comparable whole brain voxel-level error measures to the MLEM reconstruction of 100% of the data (for simulated data, at 100 iterations). For regional metrics, the kernel method at reduced dose levels attained a reduced coefficient of variation and more accurate mean values compared to MLEM. However, the advances provided by the kernel method are at the expense of possible over-smoothing of features unique to the PET data. Further assessment on clinical data is required to determine the level of dose reduction that can be routinely achieved using the kernel method, whilst maintaining the diagnostic utility of the scan.

5.
IEEE Trans Radiat Plasma Med Sci ; 2(5): 470-482, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30298139

RESUMO

Positron emission tomography (PET) is a highly sensitive functional and molecular imaging modality which can measure picomolar concentrations of an injected radionuclide. However, the physical sensitivity of PET is limited, and reducing the injected dose leads to low count data and noisy reconstructed images. A highly effective way of reducing noise is to reparameterise the reconstruction in terms of MR-derived spatial basis functions. Spatial basis functions derived using the kernel method have demonstrated excellent noise reduction properties and maintain shared PET-MR detailed structures. However, as previously shown in the literature, the MR-guided kernel method may lead to excessive smoothing of structures that are only present in the PET data. This work makes two main contributions in order to address this problem: first, we exploit the potential of the MR-guided kernel method to form more spatially-compact basis functions which are able to preserve PET-unique structures, and secondly, we consider reconstruction at the native MR resolution. The former contribution notably improves the recovery of structures which are unique to the PET data. These adaptations of the kernel method were compared to the conventional implementation of the MR-guided kernel method and also to MLEM, in terms of ability to recover PET unique structures for both simulated and real data. The spatially-compact kernel method showed clear visual and quantitative improvements in the reconstruction of the PET unique structures, relative to the conventional kernel method for all sizes of PET unique structures investigated, whilst maintaining to a large extent the impressive noise mitigating and detail preserving properties of the conventional MR-guided kernel method. We therefore conclude that a spatially-compact parameterisation of the MR-guided kernel method, should be the preferred implementation strategy in order to obviate unnecessary losses in PET-unique details.

6.
Oecologia ; 82(2): 187-191, 1990 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28312664

RESUMO

When given a choice, animals often prefer foraging habitats where predation risk is low, even if such habitats provide reduced foraging opportunities. We evaluated foraging rates of tame but free-ranging Himalayan Snowcocks (Tetraogallus himalayensis) in 16 types of alpine habitats. Foraging rate was highest on level or slightly-sloping terrain and where grasses were relatively abundant. We also observed 102 wild snowcocks and found they were most nervous about raptorial predators when on level or slightly-sloping terrain and in small coveys. Snowcocks face a dilemma: they are most vulnerable to raptors in areas where they can forage most efficiently. During summer snowcocks trade off higher foraging efficiency on level terrain for lower predation risk on steeper terrain. During winter, when raptor numbers are lower, snowcocks apparently revert to using level or slightly-sloping, high-efficiency foraging habitats. Risk of predation plays an important role in habitat selection and resource utilization by snowcocks.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa