Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Antimicrob Chemother ; 77(5): 1272-1281, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35238930

RESUMO

OBJECTIVES: To search for new means of combatting carbapenemase-producing strains of Klebsiella pneumoniae by repurposing the anti-helminth drug niclosamide as an antimicrobial agent and combining it with the efflux pump inhibitor (EPI) phenyl-arginine-ß-naphthylamide (PaßN). METHODS: Niclosamide and PaßN MICs were determined for six clinical K. pneumoniae isolates harbouring different carbapenemases by broth microdilution and chequerboard assays. Time-kill curves in the presence of each drug alone and in combination were conducted. The viability of bacterial cells in the presence of repetitive exposures at 8 h to the treatment at the same concentration of niclosamide and/or PaßN (adapted isolates) was determined. The acrAB-tolC genes and their regulators were sequenced and quantitative RT-PCR was performed to assess whether the acrA gene was overexpressed in adapted isolates compared with non-adapted isolates. Finally, the MICs of several antimicrobials were determined for the adapted isolates. RESULTS: Niclosamide and PaßN had synergistic effects on the six isolates in vitro, but adaptation appeared when the treatment was applied to the medium every 8 h, with an increase of 6- to 12-fold in the MIC of PaßN. Sequencing revealed different mutations in the regulators of the tripartite AcrAB-TolC efflux pump (ramR and acrR) that may be responsible for the overexpression of the efflux pump and the adaptation to this combination. Co-resistance to different antimicrobials confirmed the overexpression of the AcrAB-TolC efflux pump. CONCLUSIONS: Despite the synergistic effect that preliminary in vitro stages may suggest, the combinations of drugs and EPI may generate adapted phenotypes associated with antimicrobial resistance that must be taken into consideration.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Klebsiella pneumoniae , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Dipeptídeos/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Niclosamida/farmacologia
2.
Antimicrob Agents Chemother ; 65(9): e0090021, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34228538

RESUMO

Klebsiella pneumoniae is an opportunistic Gram-negative pathogen that employs different strategies (resistance and persistence) to counteract antibiotic treatments. This study aimed to search for new means of combatting imipenem-resistant and persister strains of K. pneumoniae by repurposing the anticancer drug mitomycin C as an antimicrobial agent and by combining the drug and the conventional antibiotic imipenem with the lytic phage vB_KpnM-VAC13. Several clinical K. pneumoniae isolates were characterized, and an imipenem-resistant isolate (harboring OXA-245 ß-lactamase) and a persister isolate were selected for study. The mitomycin C and imipenem MICs for both isolates were determined by the broth microdilution method. Time-kill curve data were obtained by optical density at 600 nm (OD600) measurement and CFU enumeration in the presence of each drug alone and with the phage. The frequency of occurrence of mutants resistant to each drug and the combinations was also calculated, and the efficacy of the combination treatments was evaluated using an in vivo infection model (Galleria mellonella). The lytic phage vB_KpnM-VAC13 and mitomycin C had synergistic effects on imipenem-resistant and persister isolates, both in vitro and in vivo. The phage-imipenem combination successfully killed the persisters but not the imipenem-resistant isolate harboring OXA-245 ß-lactamase. Interestingly, the combinations decreased the emergence of in vitro resistant mutants of both isolates. Combinations of the lytic phage vB_KpnM-VAC13 with mitomycin C and imipenem were effective against the persister K. pneumoniae isolate. The lytic phage-mitomycin C combination was also effective against imipenem-resistant K. pneumoniae strains harboring OXA-245 ß-lactamase.


Assuntos
Bacteriófagos , Infecções por Klebsiella , Antibacterianos/farmacologia , Humanos , Imipenem/farmacologia , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Mitomicina/farmacologia , beta-Lactamases/genética
3.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32718971

RESUMO

Antibiotic failure not only is due to the development of resistance by pathogens but can also often be explained by persistence and tolerance. Persistence and tolerance can be included in the "persistent phenotype," with high relevance for clinics. Two of the most important molecular mechanisms involved in tolerance and persistence are toxin-antitoxin (TA) modules and signaling via guanosine pentaphosphate/tetraphosphate [(p)ppGpp], also known as "magic spot." (p)ppGpp is a very important stress alarmone which orchestrates the stringent response in bacteria; hence, (p)ppGpp is produced during amino acid or fatty acid starvation by proteins belonging to the RelA/SpoT homolog family (RSH). However, (p)ppGpp levels can also accumulate in response to a wide range of signals, including oxygen variation, pH downshift, osmotic shock, temperature shift, or even exposure to darkness. Furthermore, the stringent response is not only involved in responses to environmental stresses (starvation for carbon sources, fatty acids, and phosphates or heat shock), but it is also used in bacterial pathogenesis, host invasion, and antibiotic tolerance and persistence. Given the exhaustive and contradictory literature surrounding the role of (p)ppGpp in bacterial persistence, and with the aim of summarizing what is known so far about the magic spot in this bacterial stage, this review provides new insights into the link between the stringent response and persistence. Moreover, we review some of the innovative treatments that have (p)ppGpp as a target, which are in the spotlight of the scientific community as candidates for effective antipersistence agents.


Assuntos
Antitoxinas , Guanosina Pentafosfato , Antitoxinas/metabolismo , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Guanosina Tetrafosfato
4.
J Clin Microbiol ; 57(8)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31189585

RESUMO

Tuberculosis (TB) remains a major health problem worldwide. Control of TB requires rapid, accurate diagnosis of active disease. However, extrapulmonary TB is very difficult to diagnose because the clinical specimens have very low bacterial loads. Several molecular methods involving direct detection of the Mycobacterium tuberculosis complex (MTBC) have emerged in recent years. Real-time PCR amplification simultaneously combines the amplification and detection of candidate sequences by using fluorescent probes (mainly TaqMan or Molecular Beacons) in automated systems. The multiplex real-time PCR-short assay is performed using locked nucleic acid (LNA) probes (length, 8 to 9 nucleotides) in combination with CodUNG to detect multiple pathogens in clinical samples. In this study, we evaluated the performance of this novel multiplex assay for detecting the MTBC in comparison with that of the conventional culture-based method. The multiplex real-time PCR-shortTUB assay targets two genes, whiB3 (redox-responsive transcriptional regulator) and pstS1 (phosphate-specific transporter), yielding limits of detection (LOD) of 10 copies and 100 copies, respectively, and amplification efficiencies of 92% and 99.7%, respectively. A total of 94 extrapulmonary samples and pulmonary samples with low mycobacterial loads (all smear negative; 75 MTBC culture positive) were analyzed using the test, yielding an overall sensitivity of 88% and a specificity of 95%. For pleural fluid and tissues/biopsy specimens, the sensitivity was 83% and 85%, respectively. In summary, this technique could be implemented in routine clinical microbiology testing to reduce the overall turnaround time for MTBC detection and may therefore be a useful tool for the diagnosis of extrapulmonary tuberculosis and diagnosis using pulmonary samples with low mycobacterial loads.


Assuntos
Carga Bacteriana/métodos , Pulmão/microbiologia , Reação em Cadeia da Polimerase Multiplex/normas , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Humanos , Limite de Detecção , Reação em Cadeia da Polimerase Multiplex/métodos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Oligonucleotídeos/genética , Derrame Pleural/microbiologia , Sensibilidade e Especificidade
5.
Artigo em Inglês | MEDLINE | ID: mdl-29463538

RESUMO

The molecular mechanisms of tolerance and persistence associated with several compounds in Acinetobacter baumannii clinical isolates are unknown. Using transcriptomic and phenotypic studies, we found a link between mechanisms of bacterial tolerance to chlorhexidine and the development of persistence in the presence of imipenem in an A. baumannii strain belonging to clinical clone ST-2 (OXA-24 ß-lactamase and AbkAB toxin-antitoxin [TA] system carried in a plasmid). Interestingly, the strain A. baumannii ATCC 17978 (AbkAB TA system from plasmid) showed persistence in the presence of imipenem and chlorhexidine.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Antibacterianos/uso terapêutico , Clorexidina/uso terapêutico , Tolerância a Medicamentos/genética , Imipenem/uso terapêutico , Sistemas Toxina-Antitoxina/genética , beta-Lactamases/genética , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/patogenicidade , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/genética
6.
Anaerobe ; 29: 3-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24791674

RESUMO

This study describes the microbial community richness and dynamics of two semi-continuously stirred biogas reactors during a time-course study of 120 days. The reactors were fed with untreated and autoclaved (160 °C, 6.2 bar) food waste. The microbial community was analysed using a bacteria- and archaea-targeting 16S rRNA gene-based Terminal-Restriction Fragment Length Polymorphism (T-RFLP) approach. Compared with the archaeal community, the structures and functions of the bacterial community were found to be more complex and diverse. With the principal coordinates analysis it was possible to separate both microbial communities with 75 and 50% difference for bacteria and archaea, respectively, in the two reactors fed with the same waste but with different pretreatment. Despite the use of the same feeding material, anaerobic reactors showed a distinct community profile which could explain the differences in methane yield (2-17%). The community composition was highly dynamic for bacteria and archaea during the entire studied period. This study illustrates that microbial communities are dependent on feeding material and that correlations among specific bacterial and archaeal T-RFs can be established.


Assuntos
Archaea/genética , Bactérias/genética , Metano/biossíntese , Consórcios Microbianos/genética , RNA Ribossômico 16S/genética , Archaea/metabolismo , Bactérias/metabolismo , Biocombustíveis , Reatores Biológicos , Alimentos , Variação Genética , Temperatura Alta , Polimorfismo de Fragmento de Restrição , Pressão , Análise de Componente Principal , Resíduos
7.
Methods Mol Biol ; 2734: 171-180, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38066369

RESUMO

Interest in phage therapy has increased in the last decade, and animal models have become essential in this field. The larval stage of the wax moth, Galleria mellonella, represents an easy-to-handle model. The larvae have an innate immune response and survive at 37 °C, which is ideal for infection and antimicrobial studies with bacteriophages. In this chapter, we describe the procedures used to study the antimicrobial activity of bacteriophages in a G. mellonella infection model.


Assuntos
Bacteriófagos , Mariposas , Terapia por Fagos , Animais , Bacteriófagos/fisiologia , Modelos Animais de Doenças , Larva
8.
Front Microbiol ; 15: 1416628, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989015

RESUMO

Background: Multidrug-resistant bacteria and the shortage of new antibiotics constitute a serious health problem. This problem has led to increased interest in the use of bacteriophages, which have great potential as antimicrobial agents but also carry the risk of inducing resistance. The objective of the present study was to minimize the development of phage resistance in Klebsiella pneumoniae strains by inhibiting quorum sensing (QS) and thus demonstrate the role of QS in regulating defense mechanisms. Results: Cinnamaldehyde (CAD) was added to K. pneumoniae cultures to inhibit QS and thus demonstrate the role of the signaling system in regulating the anti-phage defense mechanism. The QS inhibitory activity of CAD in K. pneumoniae was confirmed by a reduction in the quantitative expression of the lsrB gene (AI-2 pathway) and by proteomic analysis. The infection assays showed that the phage was able to infect a previously resistant K. pneumoniae strain in the cultures to which CAD was added. The results were confirmed using proteomic analysis. Thus, anti-phage defense-related proteins from different systems, such as cyclic oligonucleotide-based bacterial anti-phage signaling systems (CBASS), restriction-modification (R-M) systems, clustered regularly interspaced short palindromic repeat-Cas (CRISPR-Cas) system, and bacteriophage control infection (BCI), were present in the cultures with phage but not in the cultures with phage and CAD. When the QS and anti-phage defense systems were inhibited by the combined treatment, proteins related to phage infection and proliferation, such as the tail fiber protein, the cell division protein DamX, and the outer membrane channel protein TolC, were detected. Conclusion: Inhibition of QS reduces phage resistance in K. pneumoniae, resulting in the infection of a previously resistant strain by phage, with a significant increase in phage proliferation and a significant reduction in bacterial growth. QS inhibitors could be considered for therapeutic application by including them in phage cocktails or in phage-antibiotic combinations to enhance synergistic effects and reduce the emergence of antimicrobial resistance.

9.
JAC Antimicrob Resist ; 6(1): dlae017, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343627

RESUMO

Antibiotic failure is one of the most worrisome threats to global health. Among the new therapeutic efforts that are being explored, the use of bacteriophages (viruses that kill bacteria), also known as 'phages', is being extensively studied as a strategy to target bacterial pathogens. However, one of the main drawbacks of phage therapy is the plethora of defence mechanisms that bacteria use to defend themselves against phages. This review aims to summarize the therapeutic approaches that are being evaluated to overcome the bacterial defence systems, including the most innovative therapeutic approaches applied: circumvention of phage receptor mutations; modification of prophages; targeting of CRISPR-Cas systems and the biofilm matrix; engineering of safer and more efficacious phages; and inhibition of the anti-persister strategies used by bacteria.

10.
Antibiotics (Basel) ; 13(9)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39334989

RESUMO

The combination of several therapeutic strategies is often seen as a good way to decrease resistance rates, since bacteria can more easily overcome single-drug treatments than multi-drug ones. This strategy is especially attractive when several targets and subpopulations are affected, as it is the case of Klebsiella pneumoniae persister cells, a subpopulation of bacteria able to transiently survive antibiotic exposures. This work aims to evaluate the potential of a repurposed anticancer drug, mitomycin C, combined with the K. pneumoniae lytic phage vB_KpnM-VAC13 in vitro and its safety in an in vivo murine model against two clinical isolates of this pathogen, one of them exhibiting an imipenem-persister phenotype. At the same time, we verified the absence of toxicity of mitomycin C at the concentration using the human chondrocyte cell line T/C28a2. The viability of these human cells was checked using both cytotoxicity assays and flow cytometry.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa