Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 55(15): 4261-9, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27411158

RESUMO

We present a novel bimodal endoscopic imaging probe that can simultaneously provide full-field white-light video microscopy and confocal optical coherence tomography (OCT) depth scans. The two modalities rely on spectrally separated optical paths that run partially in parallel through a micro-optical bench system, which has a cross-section of only 2 mm×2.76 mm and is realized via standard silicon micromachining techniques. With a numerical aperture of 0.061, the video modality has a resolution and field of view of 9.3 and 1240 µm×1080 µm, respectively. The resolution is limited by the pixel spacing of the coherent fiber bundle, which relays the acquired image from the distal to the proximal end. A custom-designed diffractive optical element placed within the video imaging path significantly improves the image contrast by up to 45% in the medium frequency range. The OCT modality is optimized for 830 nm center wavelength, and works in a confocal arrangement with an NA of 0.018. It provides single-point depth probing at the center of the video image with a lateral resolution of 20 µm. Through its compact footprint and enhanced functionality, the probe can provide depth-resolved guiding capability for existing laparoscopes and represents a major step toward a new class of multimodal endoscopic imaging probes.

2.
Opt Express ; 23(19): 24525-36, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26406656

RESUMO

We describe a novel approach for fabricating customized convex as well as concave micro-lenses using substrates with sophisticated pinning architecture and utilizing a drop-on-demand jet printer. The polymeric lens material deposited on the wafer is cured by UV light irradiation yielding lenses with high quality surfaces. Surface shape and roughness of the cured polymer lenses are characterized by white light interferometry. Their optical quality is demonstrated by imaging an USAF1951 test chart. The evaluated modulation transfer function is compared to Zemax simulations as a benchmark for the fabricated lenses.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa