Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 225(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014667

RESUMO

Estimates of the energetic costs of locomotion (COL) at different activity levels are necessary to answer fundamental eco-physiological questions and to understand the impacts of anthropogenic disturbance to marine mammals. We combined estimates of energetic costs derived from breath-by-breath respirometry with measurements of overall dynamic body acceleration (ODBA) from biologging tags to validate ODBA as a proxy for COL in trained common bottlenose dolphins (Tursiops truncatus). We measured resting metabolic rate (RMR); mean individual RMR was 0.71-1.42 times that of a similarly sized terrestrial mammal and agreed with past measurements that used breath-by-breath and flow-through respirometry. We also measured energy expenditure during submerged swim trials, at primarily moderate exercise levels. We subtracted RMR to obtain COL, and normalized COL by body size to incorporate individual swimming efficiencies. We found both mass-specific energy expenditure and mass-specific COL were linearly related with ODBA. Measurements of activity level and cost of transport (the energy required to move a given distance) improve understanding of the COL in marine mammals. The strength of the correlation between ODBA and COL varied among individuals, but the overall relationship can be used at a broad scale to estimate the energetic costs of disturbance and daily locomotion costs to build energy budgets, and investigate the costs of diving in free-ranging animals where bio-logging data are available. We propose that a similar approach could be applied to other cetacean species.


Assuntos
Golfinho Nariz-de-Garrafa , Mergulho , Aceleração , Animais , Golfinho Nariz-de-Garrafa/fisiologia , Mergulho/fisiologia , Metabolismo Energético , Natação/fisiologia
2.
J Exp Biol ; 224(Pt 1)2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33257432

RESUMO

Among the many factors that influence the cardiovascular adjustments of marine mammals is the act of respiration at the surface, which facilitates rapid gas exchange and tissue re-perfusion between dives. We measured heart rate (fH) in six adult male bottlenose dolphins (Tursiops truncatus) spontaneously breathing at the surface to quantify the relationship between respiration and fH, and compared this with fH during submerged breath-holds. We found that dolphins exhibit a pronounced respiratory sinus arrhythmia (RSA) during surface breathing, resulting in a rapid increase in fH after a breath followed by a gradual decrease over the following 15-20 s to a steady fH that is maintained until the following breath. RSA resulted in a maximum instantaneous fH (ifH) of 87.4±13.6 beats min-1 and a minimum ifH of 56.8±14.8 beats min-1, and the degree of RSA was positively correlated with the inter-breath interval (IBI). The minimum ifH during 2 min submerged breath-holds where dolphins exhibited submersion bradycardia (36.4±9.0 beats min-1) was lower than the minimum ifH observed during an average IBI; however, during IBIs longer than 30 s, the minimum ifH (38.7±10.6 beats min-1) was not significantly different from that during 2 min breath-holds. These results demonstrate that the fH patterns observed during submerged breath-holds are similar to those resulting from RSA during an extended IBI. Here, we highlight the importance of RSA in influencing fH variability and emphasize the need to understand its relationship to submersion bradycardia.


Assuntos
Golfinho Nariz-de-Garrafa , Arritmia Sinusal Respiratória , Animais , Bradicardia/veterinária , Imersão , Masculino , Respiração
3.
J Exp Biol ; 223(Pt 17)2020 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-32680902

RESUMO

In the current study we used transthoracic echocardiography to measure stroke volume (SV), heart rate (fH) and cardiac output (CO) in adult bottlenose dolphins (Tursiops truncatus), a male beluga whale calf [Delphinapterus leucas, body mass (Mb) range: 151-175 kg] and an adult female false killer whale (Pseudorca crassidens, estimated Mb: 500-550 kg) housed in managed care. We also recorded continuous electrocardiogram (ECG) in the beluga whale, bottlenose dolphin, false killer whale, killer whale (Orcinus orca) and pilot whale (Globicephala macrorhynchus) to evaluate cardiorespiratory coupling while breathing spontaneously under voluntary control. The results show that cetaceans have a strong respiratory sinus arrythmia (RSA), during which both fH and SV vary within the interbreath interval, making average values dependent on the breathing frequency (fR). The RSA-corrected fH was lower for all cetaceans compared with that of similarly sized terrestrial mammals breathing continuously. As compared with terrestrial mammals, the RSA-corrected SV and CO were either lower or the same for the dolphin and false killer whale, while both were elevated in the beluga whale. When plotting fR against fH for an inactive mammal, cetaceans had a greater cardiac response to changes in fR as compared with terrestrial mammals. We propose that these data indicate an important coupling between respiration and cardiac function that enhances gas exchange, and that this RSA is important to maximize gas exchange during surface intervals, similar to that reported in the elephant seal.


Assuntos
Golfinho Nariz-de-Garrafa , Cetáceos , Animais , Débito Cardíaco , Feminino , Masculino , Mamíferos , Volume Sistólico
4.
Mar Environ Res ; 201: 106674, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39168086

RESUMO

Oceans are increasingly crowded by anthropogenic activities yet the impact on Outer Continental Shelf (OCS) marine life remains largely unquantified. The MAPS (Marine Mammal Acoustic and Spatial Ecology) study of 2019 included passive acoustic and visual vessel surveys over the Mid-Atlantic OCS of the USA to address data gaps in winter/spring for deep-diving cetaceans, including sperm whales. Echolocation clicks were used to derive slant ranges to sperm whales for design- and model-based density estimates. Although more survey effort was realised in the spring, high densities of whales were identified in both winter and spring (10.46 and 8.89 per 1000 km2 respectively). The spring model-based abundance estimate of 1587 whales (CI 946-2663) was considered the most representative figure, in part due to lower coefficients of variation. Modelling suggested that high densities of whales were associated with warm core rings, eddies and edges. As OCS waters provide an important foraging habitat for North Atlantic sperm whales, appropriate mitigation is required to ensure commercial pressures to develop offshore energy do not negatively affect this endangered species.

5.
Physiol Rep ; 11(11): e15698, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37271741

RESUMO

While basal metabolic rate (BMR) scales proportionally with body mass (Mb ), it remains unclear whether the relationship differs between mammals from aquatic and terrestrial habitats. We hypothesized that differences in BMR allometry would be reflected in similar differences in scaling of O2 delivery pathways through the cardiorespiratory system. We performed a comparative analysis of BMR across 63 mammalian species (20 aquatic, 43 terrestrial) with a Mb range from 10 kg to 5318 kg. Our results revealed elevated BMRs in small (>10 kg and <100 kg) aquatic mammals compared to small terrestrial mammals. The results demonstrated that minute ventilation, that is, tidal volume (VT )·breathing frequency (fR ), as well as cardiac output, that is, stroke volume·heart rate, do not differ between the two habitats. We found that the "aquatic breathing strategy", characterized by higher VT and lower fR resulting in a more effective gas exchange, and by elevated blood hemoglobin concentrations resulting in a higher volume of O2 for the same volume of blood, supported elevated metabolic requirements in aquatic mammals. The results from this study provide a possible explanation of how differences in gas exchange may serve energy demands in aquatic versus terrestrial mammals.


Assuntos
Metabolismo Basal , Mamíferos , Animais , Metabolismo Basal/fisiologia , Mamíferos/metabolismo , Respiração , Volume de Ventilação Pulmonar
6.
Philos Trans R Soc Lond B Biol Sci ; 376(1830): 20200223, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34121456

RESUMO

Plasticity in the cardiac function of a marine mammal facilitates rapid adjustments to the contrasting metabolic demands of breathing at the surface and diving during an extended apnea. By matching their heart rate (fH) to their immediate physiological needs, a marine mammal can improve its metabolic efficiency and maximize the proportion of time spent underwater. Respiratory sinus arrhythmia (RSA) is a known modulation of fH that is driven by respiration and has been suggested to increase cardiorespiratory efficiency. To investigate the presence of RSA in cetaceans and the relationship between fH, breathing rate (fR) and body mass (Mb), we measured simultaneous fH and fR in five cetacean species in human care. We found that a higher fR was associated with a higher mean instantaneous fH (ifH) and minimum ifH of the RSA. By contrast, fH scaled inversely with Mb such that larger animals had lower mean and minimum ifHs of the RSA. There was a significant allometric relationship between maximum ifH of the RSA and Mb, but not fR, which may indicate that this parameter is set by physical laws and not adjusted dynamically with physiological needs. RSA was significantly affected by fR and was greatly reduced with small increases in fR. Ultimately, these data show that surface fHs of cetaceans are complex and the fH patterns we observed are controlled by several factors. We suggest the importance of considering RSA when interpreting fH measurements and particularly how fR may drive fH changes that are important for efficient gas exchange. This article is part of the theme issue 'Measuring physiology in free-living animals (Part I)'.


Assuntos
Peso Corporal/fisiologia , Cetáceos/fisiologia , Frequência Cardíaca/fisiologia , Taxa Respiratória/fisiologia , Animais , Animais de Zoológico/fisiologia , Arritmia Sinusal Respiratória/fisiologia
7.
Evol Med Public Health ; 9(1): 420-430, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35169481

RESUMO

BACKGROUND AND OBJECTIVES: Ischemic events, such as ischemic heart disease and stroke, are the number one cause of death globally. Ischemia prevents blood, carrying essential nutrients and oxygen, from reaching tissues, leading to cell and tissue death, and eventual organ failure. While humans are relatively intolerant to ischemic events, other species, such as marine mammals, have evolved a unique tolerance to chronic ischemia/reperfusion during apneic diving. To identify possible molecular features of an increased tolerance for apnea, we examined changes in gene expression in breath-holding dolphins. METHODOLOGY: Here, we capitalized on the adaptations possesed by bottlenose dolphins (Tursiops truncatus) for diving as a comparative model of ischemic stress and hypoxia tolerance to identify molecular features associated with breath holding. Given that signals in the blood may influence physiological changes during diving, we used RNA-Seq and enzyme assays to examine time-dependent changes in gene expression in the blood of breath-holding dolphins. RESULTS: We observed time-dependent upregulation of the arachidonate 5-lipoxygenase (ALOX5) gene and increased lipoxygenase activity during breath holding. ALOX5 has been shown to be activated during hypoxia in rodent models, and its metabolites, leukotrienes, induce vasoconstriction. CONCLUSIONS AND IMPLICATIONS: The upregulation of ALOX5 mRNA occurred within the calculated aerobic dive limit of the species, suggesting that ALOX5 may play a role in the dolphin's physiological response to diving, particularly in a pro-inflammatory response to ischemia and in promoting vasoconstriction. These observations pinpoint a potential molecular mechanism by which dolphins, and perhaps other marine mammals, respond to the prolonged breath holds associated with diving.

8.
Front Physiol ; 11: 604018, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329056

RESUMO

Previous reports suggested the existence of direct somatic motor control over heart rate (f H) responses during diving in some marine mammals, as the result of a cognitive and/or learning process rather than being a reflexive response. This would be beneficial for O2 storage management, but would also allow ventilation-perfusion matching for selective gas exchange, where O2 and CO2 can be exchanged with minimal exchange of N2. Such a mechanism explains how air breathing marine vertebrates avoid diving related gas bubble formation during repeated dives, and how stress could interrupt this mechanism and cause excessive N2 exchange. To investigate the conditioned response, we measured the f H-response before and during static breath-holds in three bottlenose dolphins (Tursiops truncatus) when shown a visual symbol to perform either a long (LONG) or short (SHORT) breath-hold, or during a spontaneous breath-hold without a symbol (NS). The average f H (if Hstart), and the rate of change in f H (dif H/dt) during the first 20 s of the breath-hold differed between breath-hold types. In addition, the minimum instantaneous f H (if Hmin), and the average instantaneous f H during the last 10 s (if Hend) also differed between breath-hold types. The dif H/dt was greater, and the if Hstart, if Hmin, and if Hend were lower during a LONG as compared with either a SHORT, or an NS breath-hold (P < 0.05). Even though the NS breath-hold dives were longer in duration as compared with SHORT breath-hold dives, the dif H/dt was greater and the if Hstart, if Hmin, and if Hend were lower during the latter (P < 0.05). In addition, when the dolphin determined the breath-hold duration (NS), the f H was more variable within and between individuals and trials, suggesting a conditioned capacity to adjust the f H-response. These results suggest that dolphins have the capacity to selectively alter the f H-response during diving and provide evidence for significant cardiovascular plasticity in dolphins.

9.
DNA Repair (Amst) ; 52: 31-48, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28242054

RESUMO

Mercury toxicity mechanisms have the potential to induce DNA damage and disrupt cellular processes, like mitochondrial function. Proper mitochondrial function is important for cellular bioenergetics and immune signaling and function. Reported impacts of mercury on the nuclear genome (nDNA) are conflicting and inconclusive, and mitochondrial DNA (mtDNA) impacts are relatively unknown. In this study, we assessed genotoxic (mtDNA and nDNA), metabolic, and innate immune impacts of inorganic and organic mercury exposure in Caenorhabditis elegans. Genotoxic outcomes measured included DNA damage, DNA damage repair (nucleotide excision repair, NER; base excision repair, BER), and genomic copy number following MeHg and HgCl2 exposure alone and in combination with known DNA damage-inducing agents ultraviolet C radiation (UVC) and hydrogen peroxide (H2O2), which cause bulky DNA lesions and oxidative DNA damage, respectively. Following exposure to both MeHg and HgCl2, low-level DNA damage (∼0.25 lesions/10kb mtDNA and nDNA) was observed. Unexpectedly, a higher MeHg concentration reduced damage in both genomes compared to controls. However, this observation was likely the result of developmental delay. In co-exposure treatments, both mercury compounds increased initial DNA damage (mtDNA and nDNA) in combination with H2O2 exposure, but had no impact in combination with UVC exposure. Mercury exposure both increased and decreased DNA damage removal via BER. DNA repair after H2O2 exposure in mercury-exposed nematodes resulted in damage levels lower than measured in controls. Impacts to NER were not detected. mtDNA copy number was significantly decreased in the MeHg-UVC and MeHg-H2O2 co-exposure treatments. Mercury exposure had metabolic impacts (steady-state ATP levels) that differed between the compounds; HgCl2 exposure decreased these levels, while MeHg slightly increased levels or had no impact. Both mercury species reduced mRNA levels for immune signaling-related genes, but had mild or no effects on survival on pathogenic bacteria. Overall, mercury exposure disrupted mitochondrial endpoints in a mercury-compound dependent fashion.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Dano ao DNA , Reparo do DNA , Mercúrio/toxicidade , Compostos de Metilmercúrio/toxicidade , Mitocôndrias/efeitos dos fármacos , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efeitos da radiação , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Núcleo Celular/efeitos da radiação , DNA de Helmintos/efeitos dos fármacos , DNA de Helmintos/fisiologia , DNA de Helmintos/efeitos da radiação , Homeostase , Peróxido de Hidrogênio/toxicidade , Cinética , Mitocôndrias/genética , Mitocôndrias/efeitos da radiação , Raios Ultravioleta
10.
Endocrinology ; 156(6): 1941-51, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25714811

RESUMO

Recent data indicate that approximately 12% of children in the United States are affected by neurodevelopmental disorders, including attention deficit hyperactivity disorder, learning disorders, intellectual disabilities, and autism spectrum disorders. Accumulating evidence indicates a multifactorial etiology for these disorders, with social, physical, genetic susceptibility, nutritional factors, and chemical toxicants acting together to influence risk. Exposure to endocrine-disrupting chemicals during the early stages of life can disrupt normal patterns of development and thus alter brain function and disease susceptibility later in life. This article highlights research efforts and pinpoints approaches that could shed light on the possible associations between environmental chemicals that act on the endocrine system and compromised neurodevelopmental outcomes.


Assuntos
Disruptores Endócrinos/toxicidade , Sistema Nervoso/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , DDT/toxicidade , Suscetibilidade a Doenças , Sistema Endócrino/efeitos dos fármacos , Humanos , Metais Pesados/toxicidade , Praguicidas/toxicidade , Fenóis/toxicidade , Bifenilos Policlorados/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa