RESUMO
SUMMARYIn healthcare settings, contaminated surfaces play an important role in the transmission of nosocomial pathogens potentially resulting in healthcare-associated infections (HAI). Pathogens can be transmitted directly from frequent hand-touch surfaces close to patients or indirectly by staff and visitors. HAI risk depends on exposure, extent of contamination, infectious dose (ID), virulence, hygiene practices, and patient vulnerability. This review attempts to close a gap in previous reviews on persistence/tenacity by only including articles (n = 171) providing quantitative data on re-cultivable pathogens from fomites for a better translation into clinical settings. We have therefore introduced the new term "replication capacity" (RC). The RC is affected by the degree of contamination, surface material, temperature, relative humidity, protein load, organic soil, UV-light (sunlight) exposure, and pH value. In general, investigations into surface RC are mainly performed in vitro using reference strains with high inocula. In vitro data from studies on 14 Gram-positive, 26 Gram-negative bacteria, 18 fungi, 4 protozoa, and 37 viruses. It should be regarded as a worst-case scenario indicating the upper bounds of risks when using such data for clinical decision-making. Information on RC after surface contamination could be seen as an opportunity to choose the most appropriate infection prevention and control (IPC) strategies. To help with decision-making, pathogens characterized by an increased nosocomial risk for transmission from inanimate surfaces ("fomite-borne") are presented and discussed in this systematic review. Thus, the review offers a theoretical basis to support local risk assessments and IPC recommendations.
RESUMO
Social interactions are critical for mammalian survival and evolution. Dysregulation of social behavior often leads to psychopathologies such as social anxiety disorder, denoted by intense fear and avoidance of social situations. Using the social fear conditioning (SFC) paradigm, we analyzed expression levels of miR-132-3p and miR-124-3p within the septum, a brain region essential for social preference and avoidance behavior, after acquisition and extinction of social fear. Here, we found that SFC dynamically altered both microRNAs. Functional in vivo approaches using pharmacological strategies, inhibition of miR-132-3p, viral overexpression of miR-132-3p, and shRNA-mediated knockdown of miR-132-3p specifically within oxytocin receptor-positive neurons confirmed septal miR-132-3p to be critically involved not only in social fear extinction, but also in oxytocin-induced reversal of social fear. Moreover, Argonaute-RNA-co-immunoprecipitation-microarray analysis and further in vitro and in vivo quantification of target mRNA and protein, revealed growth differentiation factor-5 (Gdf-5) as a target of miR-132-3p. Septal application of GDF-5 impaired social fear extinction suggesting its functional involvement in the reversal of social fear. In summary, we show that septal miR-132-3p and its downstream target Gdf-5 regulate social fear expression and potentially mediate oxytocin-induced reversal of social fear.
RESUMO
Social anxiety disorder is characterized by a persistent fear and avoidance of social situations, but available treatment options are rather unspecific. Using an established mouse social fear conditioning (SFC) paradigm, we profiled gene expression and chromatin alterations after the acquisition and extinction of social fear within the septum, a brain region important for social fear and social behaviors. Here, we particularly focused on the successful versus unsuccessful outcome of social fear extinction training, which corresponds to treatment responsive versus resistant patients in the clinics. Validation of coding and non-coding RNAs revealed specific isoforms of the long non-coding RNA (lncRNA) Meg3 regulated, depending on the success of social fear extinction. Moreover, PI3K/AKT was differentially activated with extinction success in SFC-mice. In vivo knockdown of specific Meg3 isoforms increased baseline activity of PI3K/AKT signaling, and mildly delayed social fear extinction. Using ATAC-Seq and CUT&RUN, we found alterations in the chromatin structure of specific genes, which might be direct targets of lncRNA Meg3.
Assuntos
Extinção Psicológica , Medo , RNA Longo não Codificante , Animais , Camundongos , Cromatina , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , RNA Longo não Codificante/genética , TranscriptomaRESUMO
The SARS-CoV-2 pandemic has highlighted the importance of viable infection surveillance and the relevant infrastructure. From a German perspective, an integral part of this infrastructure, genomic pathogen sequencing, was at best fragmentary and stretched to its limits due to the lack or inefficient use of equipment, human resources, data management and coordination. The experience in other countries has shown that the rate of sequenced positive samples and linkage of genomic and epidemiological data (person, place, time) represent important factors for a successful application of genomic pathogen surveillance. Planning, establishing and consistently supporting adequate structures for genomic pathogen surveillance will be crucial to identify and combat future pandemics as well as other challenges in infectious diseases such as multi-drug resistant bacteria and healthcare-associated infections. Therefore, the authors propose a multifaceted and coordinated process for the definition of procedural, legal and technical standards for comprehensive genomic pathogen surveillance in Germany, covering the areas of genomic sequencing, data collection and data linkage, as well as target pathogens. A comparative analysis of the structures established in Germany and in other countries is applied. This proposal aims to better tackle epi- and pandemics to come and take action from the "lessons learned" from the SARS-CoV-2 pandemic.
Assuntos
COVID-19 , Infecção Hospitalar , Humanos , Pandemias/prevenção & controle , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2/genética , GenômicaRESUMO
The SARS-CoV2 pandemic has shown a deficit of essential epidemiological infrastructure, especially with regard to genomic pathogen surveillance in Germany. In order to prepare for future pandemics, the authors consider it urgently necessary to remedy this existing deficit by establishing an efficient infrastructure for genomic pathogen surveillance. Such a network can build on structures, processes, and interactions that have already been initiated regionally and further optimize them. It will be able to respond to current and future challenges with a high degree of adaptability.The aim of this paper is to address the urgency and to outline proposed measures for establishing an efficient, adaptable, and responsive genomic pathogen surveillance network, taking into account external framework conditions and internal standards. The proposed measures are based on global and country-specific best practices and strategy papers. Specific next steps to achieve an integrated genomic pathogen surveillance include linking epidemiological data with pathogen genomic data; sharing and coordinating existing resources; making surveillance data available to relevant decision-makers, the public health service, and the scientific community; and engaging all stakeholders. The establishment of a genomic pathogen surveillance network is essential for the continuous, stable, active surveillance of the infection situation in Germany, both during pandemic phases and beyond.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/prevenção & controle , Pandemias/prevenção & controle , Alemanha/epidemiologia , GenômicaRESUMO
The neuropeptide oxytocin (OXT) has generated considerable interest as potential treatment for psychiatric disorders, including anxiety and autism spectrum disorders. However, the behavioral and molecular consequences associated with chronic OXT treatment and chronic receptor (OXTR) activation have scarcely been studied, despite the potential therapeutic long-term use of intranasal OXT. Here, we reveal that chronic OXT treatment over two weeks increased anxiety-like behavior in rats, with higher sensitivity in females, contrasting the well-known anxiolytic effect of acute OXT. The increase in anxiety was transient and waned 5 days after the infusion has ended. The behavioral effects of chronic OXT were paralleled by activation of an intracellular signaling pathway, which ultimately led to alternative splicing of hypothalamic corticotropin-releasing factor receptor 2α (Crfr2α), an important modulator of anxiety. In detail, chronic OXT shifted the splicing ratio from the anxiolytic membrane-bound (mCRFR2α) form of CRFR2α towards the soluble CRFR2α (sCRFR2α) form. Experimental induction of alternative splicing mimicked the anxiogenic effects of chronic OXT, while sCRFR2α-knock down reduced anxiety-related behavior of male rats. Furthermore, chronic OXT treatment triggered the release of sCRFR2α into the cerebrospinal fluid with sCRFR2α levels positively correlating with anxiety-like behavior. In summary, we revealed that the shifted splicing ratio towards expression of the anxiogenic sCRFR2α underlies the adverse effects of chronic OXT treatment on anxiety.
RESUMO
BACKGROUND AND AIM: At the beginning of the COVID-19 vaccination campaign in Germany, employees in medical facilities were prioritised for vaccination against SARS-CoV2 due to the high risk of exposure and contact with vulnerable groups. Hospitals were therefore encouraged to organise and implement the vaccination of their employees as soon as possible. The aim of the study was to record the practice regarding the vaccination strategy for employees in German hospitals. METHODS: In a self-developed cross-sectional study, infection control practitioners of all German university hospitals as well as non-university hospitals in Lower Saxony and Bavaria were surveyed in March 2021. The data were stratified according to the characteristics of university hospitals and non-university hospitals. RESULTS: Of 416 invitations sent out, 100 questionnaires (university hospitals: 33; non-university hospitals: 67) were completed. University hospitals reported greater vaccination capacity than non-university hospitals, but a limiting factor was uncertain vaccine supply. Vaccination information campaigns were planned or had already been conducted in 89% of clinics. About two-thirds of the respondents (70%) said they did not plan to conduct antibody tests on vaccinated employees. A follow-up of vaccinated employees to detect possible SARS-CoV2 infections by PCR was planned by 41% of the respondents. In case of detection of SARS-CoV2 infection, 72% of the respondents had planned further diagnostic procedures. DISCUSSION: All hospitals were able to achieve rapid implementation of COVID-19 vaccination of their employees. At the time of the survey, there was also much uncertainty regarding the management of breakthrough infections as well as the need for booster vaccinations.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Alemanha/epidemiologia , Vacinas contra COVID-19/uso terapêutico , Profissionais Controladores de Infecções , Estudos Transversais , Vacinação , Hospitais Universitários , Inquéritos e QuestionáriosRESUMO
Etiology and pharmacotherapy of stress-related psychiatric conditions and somatoform disorders are areas of high unmet medical need. Stressors holding chronic plus psychosocial components thereby bear the highest health risk. Although the metabotropic glutamate receptor subtype 5 (mGlu5) is well studied in the context of acute stress-induced behaviors and physiology, virtually nothing is known about its potential involvement in chronic psychosocial stress. Using the mGlu5 negative allosteric modulator CTEP (2-chloro-4-[2-[2,5-dimethyl-1-[4-(trifluoromethoxy)phenyl]imidazol-4yl]ethynyl]pyridine), a close analogue of the clinically active drug basimglurant - but optimized for rodent studies, as well as mGlu5-deficient mice in combination with a mouse model of male subordination (termed CSC, chronic subordinate colony housing), we demonstrate that mGlu5 mediates multiple physiological, immunological, and behavioral consequences of chronic psychosocial stressor exposure. For instance, CTEP dose-dependently relieved hypothalamo-pituitary-adrenal axis dysfunctions, colonic inflammation as well as the CSC-induced increase in innate anxiety; genetic ablation of mGlu5 in mice largely reproduced the stress-protective effects of CTEP and additionally ameliorated CSC-induced physiological anxiety. Interestingly, CSC also induced an upregulation of mGlu5 in the hippocampus, a stress-regulating brain area. Taken together, our findings provide evidence that mGlu5 is an important mediator for a wide range of chronic psychosocial stress-induced alterations and a potentially valuable drug target for the treatment of chronic stress-related pathologies in man.
Assuntos
Imidazóis/uso terapêutico , Piridinas/uso terapêutico , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Estresse Psicológico/psicologia , Hormônio Adrenocorticotrópico/sangue , Animais , Ansiedade/etiologia , Ansiedade/psicologia , Doença Crônica , Dominação-Subordinação , Relação Dose-Resposta a Droga , Febre/etiologia , Febre/fisiopatologia , Hidrocortisona/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Glutamato Metabotrópico 5/genética , Meio Social , Regulação para CimaRESUMO
Social anxiety disorder (SAD) is caused by traumatic social experiences. It is characterized by intense fear and avoidance of social contexts, which can be robustly mimicked by the social fear conditioning (SFC) paradigm. The extinction phase of the SFC paradigm is akin to exposure therapy for SAD and requires learning to disassociate the trauma with the social context. Learning-induced acetylation of histones is critical for extinction memory formation and its endurance. Although class I histone deacetylases (HDACs) regulate the abovementioned learning process, there is a lack of clarity in isoforms and spatial specificity in HDAC function in social learning. Utilizing the SFC paradigm, we functionally characterized the role of HDAC1, specifically in the lateral septum (LS), in regulating the formation of long-term social fear extinction memory. We measured a local increase in activity-inducing HDAC1 phosphorylation at serine residues of social fear-conditioned (SFC+) mice in response to the extinction of social fear. We also found that LS-HDAC1 function negatively correlates with acute social fear extinction learning using pharmacological and viral approaches. Further, inhibition of LS-HDAC1 enhanced the expression of the GABA-A receptor ß1 subunit (Gabrb1) in SFC+ mice, and activation of GABA-A receptors facilitated acute extinction learning. Finally, the facilitation of extinction learning by HDAC1 inhibition or GABA-A receptor activation within the LS led to the formation of long-lasting extinction memory, which persisted even 30 days after extinction. Our results show that HDAC1-mediated regulation of GABA signaling in the LS is crucial for the formation of long-lasting social fear extinction memory.
Assuntos
Extinção Psicológica , Medo , Animais , Masculino , Camundongos , Extinção Psicológica/fisiologia , Medo/fisiologia , Ácido gama-Aminobutírico , Aprendizagem , Receptores de GABA-ARESUMO
Background: Healthcare workers (HCW) are at risk of getting infected with COVID-19 at work. To prevent such incidents and provide a safe environment in hospitals, comprehensive infection control strategies are necessary. We aimed to collect information on COVID-19 infection control strategies regarding personal protective equipment (PPE), regulations during breaks for HCW and dissemination of pandemic-related information. Methods: We invited infection control practitioners from 987 randomly selected German hospitals in March-April 2021 to participate in our cross-sectional online survey. We categorized the hospital based on bed capacity (≤499 beds = small; ≥500 beds = large). Fisher's exact test was performed and p < 0.05 defined as statistically significant. Findings: 100 participants completed the questionnaire. Small hospitals were more directive about requiring FFP2 respirators (63%), whereas larger hospitals more often gave their HCW a choice between these and medical masks (67%). For the care of COVID-19 and suspected COVID-19 cases, >90% of the participants recommended the use of gloves. Notably, gloves were recommended beyond COVID-19 in 30% of the hospitals. During meal breaks various strategies were followed. Conclusion: Recommendations for PPE varied across hospital sizes, which could be due to different assessments of necessity and safety. Regulations during breaks varied strongly which illustrates the need for clear official guidelines.
RESUMO
Social interactions are essential for mammalian life and are regulated by evolutionary conserved neuronal mechanisms. An individual's internal state, experiences, and the nature of the social stimulus are critical for determining apt responses to social situations. The lateral septum (LS) - a structure of the basal forebrain - integrates abundant cortical and subcortical inputs, and projects to multiple downstream regions to generate appropriate behavioral responses. Although incoming cognitive information is indispensable for contextualizing a social stimulus, neuromodulatory information related to the internal state of the organism significantly influences the behavioral outcome as well. This review article provides an overview of the neuroanatomical properties of the LS, and examines its neurochemical (neuropeptidergic and hormonal) signaling, which provide the neuromodulatory information essential for fine-tuning social behavior across the lifespan.
Assuntos
Agressão , Comportamento Social , Agressão/fisiologia , Animais , Humanos , Mamíferos , Neurobiologia , Neurônios/fisiologiaRESUMO
The neurotrophin brain-derived neurotrophic factor (BDNF) stimulates adult neurogenesis, but also influences structural plasticity and function of serotonergic neurons. Both, BDNF/TrkB signaling and the serotonergic system modulate behavioral responses to stress and can lead to pathological states when dysregulated. The two systems have been shown to mediate the therapeutic effect of antidepressant drugs and to regulate hippocampal neurogenesis. To elucidate the interplay of both systems at cellular and behavioral levels, we generated a transgenic mouse line that overexpresses BDNF in serotonergic neurons in an inducible manner. Besides displaying enhanced hippocampus-dependent contextual learning, transgenic mice were less affected by chronic social defeat stress (CSDS) compared to wild-type animals. In parallel, we observed enhanced serotonergic axonal sprouting in the dentate gyrus and increased neural stem/progenitor cell proliferation, which was uniformly distributed along the dorsoventral axis of the hippocampus. In the forced swim test, BDNF-overexpressing mice behaved similarly as wild-type mice treated with the antidepressant fluoxetine. Our data suggest that BDNF released from serotonergic projections exerts this effect partly by enhancing adult neurogenesis. Furthermore, independently of the genotype, enhanced neurogenesis positively correlated with the social interaction time after the CSDS, a measure for stress resilience.
Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neurônios Serotoninérgicos , Animais , Antidepressivos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fluoxetina/metabolismo , Fluoxetina/farmacologia , Hipocampo/metabolismo , Camundongos , Camundongos Transgênicos , Neurogênese/fisiologia , Neurônios Serotoninérgicos/metabolismoRESUMO
Background: The B-FAST project of the National University Network (NUM) examines and records applied surveillance strategies implemented in hospitals i.a., to protect patients and employees from SARS-CoV-2 infection. Methods: Infection control physicians in German university hospitals (UK), as well as non-university hospitals (NUK; Bavaria, Lower Saxony) were surveyed in March 2021 regarding SARS-CoV-2 testing/surveillance strategies in a cross-sectional study using a standardized online questionnaire. The focus was on screening strategies taking into account the "test" methods used (case history, PCR, antigen, antibody test). Results: The response rate was 91.7% (33/36) in UK and 11.3%-32.2% in NUK. Almost all hospitals (95.0%) performed a symptom and exposure check and/or testing upon inpatient admission. Non-cause-related testing (screening) of health care workers in COVID wards was preferably done by PCR in UK (69.7% PCR; 12.1% antigen), while NUK (29.9% PCR; 49.3% antigen) used antigen testing more frequently. Regardless of the type of facility, about half of the respondents rated the benefit of screening higher than the effort (patients: 49%; employees: 45%). Conclusion: Testing/surveillance strategies find a high level of acceptance at German hospitals and are generally carried out in accordance with the national testing strategy with differences depending on the level of care.
RESUMO
Introduction: To address the question as to which infection surveillance measures are used during the ongoing COVID-19 pandemic in Germany and how they differ from pre-existing approaches. Methods: In accordance with the systematic approach of a scoping review, a literature search was conducted in national and international medical literature databases using a search string. The search in the databases was limited to the period from 01.01.2000 to 15.11.2020 and has been subsequently completed by hand search until 08.03.2021. A hand search, even beyond 15.11.2020, seemed necessary and reasonable, since due to the dynamics of the ongoing COVID-19 pandemic, a large number of articles and regulations are being published very quickly at short notice. Results: The literature search resulted in the following number of hits in the databases listed below: PubMed: 165 articlesCochrane: 1 review and 35 studiesWeb of Science: 217 articlesRobert Koch Institute: 49 articles Thus, a total of 467 hits were identified, with a total of 124 hits being duplicates. From these, 138 articles were considered relevant to the COVID-19 infection surveillance situation in Germany based on established criteria. After reading the full texts, 92 articles and websites were ultimately included in the scoping review. Discussion: Many of the lessons learned from previous outbreaks seem to have been implemented in the infection surveillance measures during the ongoing COVID-19 pandemic in Germany. Most of the changes compared with previous measures were based on technological streamlining of existing procedures and changes and more inclusion of the population in different infection surveillance measures.
RESUMO
In contrast to male rats, aggression in virgin female rats has been rarely studied. Here, we established a rat model of enhanced aggression in females using a combination of social isolation and aggression-training to specifically investigate the involvement of the oxytocin (OXT) and arginine vasopressin (AVP) systems within the lateral septum (LS). Using neuropharmacological, optogenetic, chemogenetic as well as microdialysis approaches, we revealed that enhanced OXT release within the ventral LS (vLS), combined with reduced AVP release within the dorsal LS (dLS), is required for aggression in female rats. Accordingly, increased activity of putative OXT receptor-positive neurons in the vLS, and decreased activity of putative AVP receptor-positive neurons in the dLS, are likely to underly aggression in female rats. Finally, in vitro activation of OXT receptors in the vLS increased tonic GABAergic inhibition of dLS neurons. Overall, our data suggest a model showing that septal release of OXT and AVP differentially affects aggression in females by modulating the inhibitory tone within LS sub-networks.
Assuntos
Agressão/fisiologia , Arginina Vasopressina/metabolismo , Ocitocina/metabolismo , Núcleos Septais/metabolismo , Isolamento Social/psicologia , Agressão/efeitos dos fármacos , Animais , Arginina Vasopressina/farmacologia , Feminino , Microdiálise , Neurônios/metabolismo , Ocitocina/farmacologia , Ratos Wistar , Receptores de Ocitocina/metabolismo , Receptores de Vasopressinas/metabolismo , Núcleos Septais/citologia , Núcleos Septais/efeitos dos fármacosRESUMO
Oxytocin (OT) is a great facilitator of social life but, although its effects on socially relevant brain regions have been extensively studied, OT neuron activity during actual social interactions remains unexplored. Most OT neurons are magnocellular neurons, which simultaneously project to the pituitary and forebrain regions involved in social behaviors. In the present study, we show that a much smaller population of OT neurons, parvocellular neurons that do not project to the pituitary but synapse onto magnocellular neurons, is preferentially activated by somatosensory stimuli. This activation is transmitted to the larger population of magnocellular neurons, which consequently show coordinated increases in their activity during social interactions between virgin female rats. Selectively activating these parvocellular neurons promotes social motivation, whereas inhibiting them reduces social interactions. Thus, parvocellular OT neurons receive particular inputs to control social behavior by coordinating the responses of the much larger population of magnocellular OT neurons.
Assuntos
Comportamento Animal/fisiologia , Neurônios/fisiologia , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiologia , Comportamento Social , Animais , Feminino , Ratos , Ratos Wistar , Tato , Percepção do Tato/fisiologiaRESUMO
Social behavior, a highly adaptive and crucial component of mammalian life, is regulated by particularly sensitive regulatory brain mechanisms. Substantial evidence implicates classical epigenetic mechanisms including histone modifications, DNA methylation, and nucleosome remodeling as well as nonclassical mechanisms mediated by noncoding RNA in the regulation of social behavior. These mechanisms collectively form the 'epigenetic network' that orchestrates genomic integration of salient and transient social experiences. Consequently, its dysregulation has been linked to behavioral deficits and psychopathologies. This review focuses on the role of the epigenetic network in regulating the enduring effects of social experiences during early-life, adolescence, and adulthood. We discuss research in animal models, primarily rodents, and associations between dysregulation of epigenetic mechanisms and human psychopathologies, specifically autism spectrum disorder (ASD) and schizophrenia.
Assuntos
Encéfalo/fisiologia , Epigênese Genética/fisiologia , Comportamento Social , Animais , HumanosRESUMO
Chronic stress-related psychiatric conditions and comorbid somatic pathologies are an enormous public health concern in modern society. The etiology of these disorders is complex, with stressors holding a chronic and psychosocial component representing the most acknowledged risk factor. During the last decades, research on the metabotropic glutamate receptor (mGlu) system advanced dramatically and much attention was given to the role of the metabotropic glutamate receptor subtype 7 (mGlu7) in acute stress-related behavior and physiology. However, virtually nothing is known about the potential involvement of mGlu7 in chronic psychosocial stress-related conditions. Using the chronic subordinate colony housing (CSC, 19 days) in male mice, we addressed whether central mGlu7 is altered upon chronic psychosocial stressor exposure and whether genetic ablation of mGlu7 interferes with the multitude of chronic stress-induced alterations. CSC exposure resulted in a downregulation of mGlu7 mRNA transcript levels in the prefrontal cortex, a brain region relevant for stress-related behaviors and physiology. Interestingly, mGlu7 deficiency relieved multiple chronic stress-induced alterations including the CSC-induced anxiety-prone phenotype; mGlu7 ablation also ameliorated CSC-induced physiological and immunological consequences such as hypothalamo-pituitary-adrenal (HPA) axis dysfunctions and colonic inflammation, respectively. Together, our findings provide first evidence for the involvement of mGlu7 in a wide range of behavioral and physiological alterations in response to chronic psychosocial stressor exposure. Moreover, the stress-protective phenotype of genetic mGlu7 ablation suggests mGlu7 pharmacological blockade to be a relevant option for the treatment of chronic stress-related emotional and somatic dysfunctions. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Assuntos
Receptores de Glutamato Metabotrópico/deficiência , Receptores de Glutamato Metabotrópico/genética , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Hormônio Adrenocorticotrópico/sangue , Animais , Ansiedade/sangue , Ansiedade/metabolismo , Ansiedade/psicologia , Peso Corporal/fisiologia , Corticosterona/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Psicológico/sangueRESUMO
Intranasal oxytocin (OXT) application is emerging as a potential treatment for socio-emotional disorders associated with abnormalities in OXT system (re-) activity. The crucial identification of patients with such abnormalities could be streamlined by the assessment of basal and stimulus-induced OXT concentrations in saliva, using a simple, stress-free sampling procedure (i.e. an OXT challenge test). We therefore established the Regensburg Oxytocin Challenge (ROC) test to further validate salivary OXT concentrations as a practical, reliable and sensitive biomarker. OXT concentrations were quantified by radioimmunoassay in samples collected at home by healthy adult male and female volunteers before and after running ("Run") or sexual self-stimulation ("Sex"). In lactating women, salivary OXT concentrations were quantified before, during and after breastfeeding. Salivary OXT along with salivary cortisol and heart rate were monitored in healthy adult participants undergoing the Trier Social Stress Test (TSST). The home-based "Run" and "Sex" challenges as well as the laboratory-based TSST caused quantifiable, rapid, and consistent increases in salivary OXT (approximately 2.5-fold after 10-15min), which were similar for men and women. Breastfeeding did not result in measurably increased salivary OXT levels, probably because the short pulses of OXT release characteristic for lactation were missed. Taken together, ROC tests reliably assess the responsiveness of the OXT system (i.e., the increase in salivary OXT concentrations as compared to basal levels) to challenges such as "Run" and "Sex" at home or psychosocial stress (TSST) in the laboratory. Further studies with larger sample numbers are essentially needed in order to reveal individual differences in ROC test outcomes depending on, for example, genetic or environmental factors.