RESUMO
Thrombotic complications due to platelet hyperreactivity are a major cause of death in patients undergoing chemotherapy. However, the underlying mechanisms are not fully understood. Herein, using human and GSDME-/- mouse platelets, we showed that GSDME is functionally expressed in anucleate platelets and GSDME-mediated pyroptosis, a newly identified form of cell death in mammalian nucleated cells, contributes to platelet hyperactivity in cisplatin-based chemotherapy. Cisplatin or etoposide activates caspase-3 to cleave GSDME, thereby releasing the N-terminal fragment of GSDME (GSDME-N) toward the platelet plasma membrane, subsequently forming membrane pores and facilitating platelet granule release. This eventually promotes platelet hyperactivity and thrombotic potential. We identified flotillin-2, a scaffold protein, as a GSDME-N interactor that recruits GSDME-N to the platelet membrane. loss of GSDME protects mice from cisplatin-induced platelet hyperactivity. Our results provide evidence that targeting GSDME-mediated pyroptosis could reduce thrombotic potential in chemotherapy.
RESUMO
A large amount of radioactive waste is accumulated in the process of nuclear fuel preparation, causing serious pollution to the environment and abundant depleted uranium resources to be abandoned. One of the key issues affecting the development of nuclear energy is how to make full use of depleted uranium resources efficiently. Here, U element with unique coordination mode of 5f electron is spacer bonded to transition metal with 3d orbit through the adsorption and anchoring effect of MXene, thus U and Co dual doped MXene catalyst is constructed along with the comprehensive utilization of depleted uranium resources. The as-prepared U-Co/MXene catalyst demonstrates excellent overpotential of only 184 mV at -10 mA cm-2 and excellent stability up to 150 h, significantly surpassing the bare MXene substrate. Theoretical calculations indicate that the U and Co dual doping optimizes the electronic structure of MXene catalyst by forming the U-O-Co network, thereby improving the thermodynamics of H* adsorption during the catalytic transition state. This research opens up a new path for the recovery of depleted uranium resources and the development of functional actinide catalysts.
RESUMO
The removal of uranyl ions (UO2 2+) from water is challenging due to their chemical stability, low concentrations, complex water matrix, and technical limitations in extraction and separation. Herein, a novel molybdenum disulfide/graphene oxide heterojunction (MoS2/GO-H) is developed, serving as an effective electrode for capacitive deionization (CDI). By combining the inherent advantages of electroadsorption and electrocatalysis, an innovative electroadsorption-electrocatalysis system (EES) strategy is introduced. This system utilizes interface polarization at the MoS2 and GO interface, creating an additional electric field that significantly influences carrier behavior. The MoS2/GO-H electrode, with its extraordinary adsorption capacity of 805.57 mg g-1 under optimal conditions, effectively treated uranium-laden wastewater from a mine, achieving over 90% removal efficiency despite the presence of numerous competing ions at concentrations significantly higher than UO2 2+. Employing density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations, it is found that the MoS2/GO-H total charge density at the Fermi level, enhanced by interfacial polarization, surpasses that of separate MoS2 and GO, markedly boosting conductivity and electrocatalytic effectiveness.
RESUMO
Drought-induced xylem embolism is a primary cause of plant mortality. Although c. 70% of cycads are threatened by extinction and extant cycads diversified during a period of increasing aridification, the vulnerability of cycads to embolism spread has been overlooked. We quantified the vulnerability to drought-induced embolism, pressure-volume curves, in situ water potentials, and a suite of xylem anatomical traits of leaf pinnae and rachises for 20 cycad species. We tested whether anatomical traits were linked to hydraulic safety in cycads. Compared with other major vascular plant clades, cycads exhibited similar embolism resistance to angiosperms and pteridophytes but were more vulnerable to embolism than noncycad gymnosperms. All 20 cycads had both tracheids and vessels, the proportions of which were unrelated to embolism resistance. Only vessel pit membrane fraction was positively correlated to embolism resistance, contrary to angiosperms. Water potential at turgor loss was significantly correlated to embolism resistance among cycads. Our results show that cycads exhibit low resistance to xylem embolism and that xylem anatomical traits - particularly vessels - may influence embolism resistance together with tracheids. This study highlights the importance of understanding the mechanisms of drought resistance in evolutionarily unique and threatened lineages like the cycads.
Assuntos
Cycadopsida , Secas , Folhas de Planta , Água , Xilema , Xilema/fisiologia , Xilema/anatomia & histologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Cycadopsida/fisiologia , Cycadopsida/anatomia & histologia , Especificidade da EspécieRESUMO
Native mass spectrometry (nMS) is a cutting-edge technique that leverages electrospray ionization MS (ESI-MS) to investigate large biomolecules and their complexes in solution. The goal of nMS is to retain the native structural features and interactions of the analytes during the transition to the gas phase, providing insights into their natural conformations. In biopharmaceutical development, nMS serves as a powerful tool for analyzing complex protein heterogeneity, allowing for the examination of non-covalently bonded assemblies in a state that closely resembles their natural folded form. Herein, we present an imaged capillary isoelectric focusing-MS (icIEF-MS) workflow to characterize cysteine-linked antibody-drug conjugate (ADC) under native conditions. Two ADCs were analyzed: a latest generation cysteine-linked ADC polatuzumab vedotin and the first FDA-approved cysteine-linked ADC brentuximab vedotin. This workflow benefits from a recently developed icIEF system that is MS-friendly and capable of directly coupling to a high-sensitivity MS instrument. Results show that the icIEF separation is influenced by both drug payloads and the post-translational modifications (PTMs), which are then promptly identified by MS. Overall, this native icIEF-MS method demonstrates the potential to understand and control the critical quality attributes (CQAs) that are essential for the safe and effective use of ADCs.
RESUMO
Two novel uranium(IV) orthophosphate framework compounds were obtained by the high-temperature flux method in CsCl-CsF eutectic salt. Cs2UIV(PO4)2 (1) and isostructural Cs2(UIV0.75CeIV0.25)(PO4)2 (2) are tetragonal structures bridged by (U/Ce)IV-O octacoordinated dodecahedra and PO4 tetrahedra, with Cs+ cations filling in the channels. The crystal structures exhibit good structural and thermal stability with a potential capacity to immobilize tetravalent radionuclides.
RESUMO
All-inorganic halide perovskite semiconductors have received extensive attention due to their excellent photoelectronic conversion efficiency. Prior studies have reported on compounds CsPbBr3 and CsPbCl3. However, the transition phases between them have not been systematically studied. Here, a series of large-size single crystals of CsPbBrxCl3-x (x = 0-3) were successfully grown by the Bridgman method, which proves that the Br and Cl atoms can be miscible in any proportion in the solid solution system, and the change of lattice parameters conforms to Vegard's law. Also, the bandgap and light emission were studied. It is found that the band gap (2.90-2.29 eV) and photoluminescence characteristics (from blue light to green light) can be effectively tuned by adjusting the content of the Br atom. These results provide valuable guidance for the development and optimization of photoelectronic semiconductors that can meet different practical demands.
RESUMO
The attributes of good solubility and the redox-neutral nature of molten salt fluxes enable them to be useful for the synthesis of novel crystalline actinide compounds. In this work, a flux growth method under an inert atmosphere is proposed to explore the valence diversity of uranium, and a series of five uranium silicate structures, [K3Cl][(UVIO2)(Si4O10)] (1), Cs3[(UVO2)(Si4O10)] (2), K2[UIV(Si2O7)] (3), K8[(UVIO2)(UVO2)2(Si8O22)] (4), and Cs6[UIV(UVO)2(Si12O32)] (5), were synthesized using different metal halide salt and feeding U/Si ratios. Crystal structure analysis reveals that the utilization of argon atmosphere that helps to avoid possible oxidation of low-valence uranium generates a variety of oxidation states of uranium including U(VI), U(V), U(IV), mixed-valence U(V) and U(VI), and mixed-valence U(IV) and U(V). Characterization of physicochemical properties of representative compounds shows that all these uranium silicate compounds have bandgaps among the range of 2.0-3.4 eV, and mixed-valence uranium silicate compounds have relatively narrower bandgaps. Density functional theory calculations on formation enthalpies, lattice energies, and bandgaps of all five compounds were also performed to provide more structural information about these uranium silicates. This work enriches the library of variable-valence uranium silicate compounds and provides a feasible way to produce novel actinide compounds with intriguing properties through the flux growth method that might show potential application in relevant fields such as storage media for nuclear waste.
RESUMO
New kinds of crystalline waste forms with improved structural stability are desirable for actinide immobilization. In this work, using a molten salt method, two uranium(IV) germanate compounds, namely, K2UGe3O9 (1) and K2UGe2O7 (2), were synthesized, whose compositions consisted of trimeric and dimeric units of germanate, as well as tetravalent uranium, as proved by bond valence calculation and X-ray absorption spectra. Radiation stability assessment is further performed by γ-irradiation to assess the potential of as-synthesized uranium germanate compounds as nuclear waste forms. Powder X-ray diffraction and single-crystal diffraction analyses reveal that 1 remains stable within 1 MGy dosage and undergoes a significant structural change with increasing dosage at 2 MGy, leading to a transformation of 1 to 1-ir analogous to 2 in chemical structure. The underlying mechanism was further studied through a combination of different characterization techniques, including Raman, UV-vis, and electron paramagnetic resonance spectroscopies. Density functional theory calculations of 1 and 2 were also conducted to probe the coordination interaction of germanium and uranium with oxygen atoms. This work reports new crystalline uranium germanates by flux growth and, most importantly, provides insights into the irradiation stability of these materials, which will be beneficial to developing waste forms for long-term immobilization of radionuclides.
RESUMO
Currently, many types of non-linear topological structure polymers, such as brush-shaped, star, branched and dendritic structures, have captured much attention in the field of gene delivery and nanomedicine. Compared with linear polymers, non-linear topological structural polymers offer many advantages, including multiple terminal groups, broad and complicated spatial architecture and multi-functionality sites to enhance gene delivery efficiency and targeting capabilities. Nevertheless, the complexity of their synthesis process severely hampers the development and applications of nonlinear topological polymers. This review aims to highlight various synthetic approaches of non-linear topological architecture polymers, including reversible-deactivation radical polymerization (RDRP) including atom-transfer radical polymerization (ATRP), nitroxide-mediated polymerization (NMP), reversible addition-fragmentation chain transfer (RAFT) polymerization, click chemistry reactions and Michael addition, and thoroughly discuss their advantages and disadvantages, as well as analyze their further application potential. Finally, we comprehensively discuss and summarize different non-linear topological structure polymers for genetic materials delivering performance both in vitro and in vivo, which indicated that topological effects and nonlinear topologies play a crucial role in enhancing the transfection performance of polymeric vectors. This review offered a promising guideline for the design and development of novel nonlinear polymers and facilitated the development of a new generation of polymer-based gene vectors.
Assuntos
Técnicas de Transferência de Genes , Polímeros , Polímeros/química , Transfecção , Química Click , PolimerizaçãoRESUMO
Neointimal hyperplasia is a pathological vascular remodeling caused by abnormal proliferation and migration of subintimal vascular smooth muscle cells (VSMCs) following intimal injury. There is increasing evidence that tRNA-derived small RNA (tsRNA) plays an important role in vascular remodeling. The purpose of this study is to search for tsRNAs signature of neointima formation and to explore their potential functions. The balloon injury model of rat common carotid artery was replicated to induce intimal hyperplasia, and the differentially expressed tsRNAs (DE-tsRNAs) in arteries with intimal hyperplasia were screened by small RNA sequencing and tsRNA library. A total of 24 DE-tsRNAs were found in the vessels with intimal hyperplasia by small RNA sequencing. In vitro, tRF-Glu-CTC inhibited the expression of fibromodulin (FMOD) in VSMCs, which is a negative modulator of TGF-ß1 activity. tRF-Glu-CTC also increased VSMC proliferation and migration. In vivo experiments showed that inhibition of tRF-Glu-CTC expression after balloon injury of rat carotid artery can reduce the neointimal area. In conclusion, tRF-Glu-CTC expression is increased after vascular injury and inhibits FMOD expression in VSMCs, which influences neointima formation. On the other hand, reducing the expression of tRF-Glu-CTC after vascular injury may be a potential approach to prevent vascular stenosis.
Assuntos
Lesões das Artérias Carótidas , Lesões do Sistema Vascular , Animais , Ratos , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Fibromodulina/metabolismo , Hiperplasia/complicações , Hiperplasia/metabolismo , Hiperplasia/patologia , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Neointima/patologia , Neointima/prevenção & controle , Ratos Sprague-Dawley , RNA/metabolismo , RNA de Transferência/metabolismo , Remodelação Vascular , Lesões do Sistema Vascular/metabolismoRESUMO
A new lipopeptide, N-desmethylmajusculamide B (1), was isolated from the Okinawan cyanobacterium Okeania hirsuta along with 2 known compounds majusculamide A (2) and majusculamide B (3). The planar structure of (1) was elucidated by a detailed analysis of mass spectrometry and nuclear magnetic resonance spectra. The absolute configurations of the amino acid residues were determined using Marfey's analysis. The configuration of C-16 in the α-methyl-ß-keto-decanoyl moiety was determined unambiguously to be S by conducting a semisynthesis of N-desmethylmajusculamide B from 3. The cytotoxicity against mouse L1210 leukemia cells was evaluated for majusculamides (1-3).
Assuntos
Cianobactérias , Lipopeptídeos , Cianobactérias/química , Camundongos , Animais , Lipopeptídeos/química , Lipopeptídeos/isolamento & purificação , Lipopeptídeos/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/isolamento & purificação , Espectroscopia de Ressonância MagnéticaRESUMO
This research presents a new, eco-friendly, and swift method combining solid-phase extraction and hydrophobic deep eutectic solvents (DES) with high-performance liquid chromatography (SPE-DES-HPLC) for extracting and quantifying catechin and epicatechin in Shanxi aged vinegar (SAV). The parameters, such as the elution solvent type, the XAD-2 macroporous resin dosage, the DES ratio, the DES volume, the adsorption time, and the desorption time, were optimized via a one-way experiment. A central composite design using the Box-Behnken methodology was employed to investigate the effects of various factors, including 17 experimental runs and the construction of three-dimensional response surface plots to identify the optimal conditions. The results show that the optimal conditions were an HDES (tetraethylammonium chloride and octanoic acid) ratio of 1:3, an XAD-2 macroporous resin dosage of 188 mg, and an adsorption time of 11 min. Under these optimal conditions, the coefficients of determination of the method were greater than or equal to 0.9917, the precision was less than 5%, and the recoveries ranged from 98.8% to 118.8%. The environmentally friendly nature of the analytical process and sample preparation was assessed via the Analytical Eco-Scale and AGREE, demonstrating that this method is a practical and eco-friendly alternative to conventional determination techniques. In summary, this innovative approach offers a solid foundation for the assessment of flavanol compounds present in SAV samples.
Assuntos
Ácido Acético , Catequina , Solventes Eutéticos Profundos , Interações Hidrofóbicas e Hidrofílicas , Extração em Fase Sólida , Cromatografia Líquida de Alta Pressão/métodos , Extração em Fase Sólida/métodos , Ácido Acético/química , Catequina/química , Catequina/análise , Solventes Eutéticos Profundos/química , AdsorçãoRESUMO
PURPOSE: With the increasing level of automation in automobiles, the advent of autonomous vehicles has reduced the tendency of drivers and passengers to focus on the task of driving. The increasing automation in automobiles reduced the drivers' and passengers' focus on driving, which allowed occupants to choose a more relaxed and comfortable sitting position. Meanwhile, the occupant's sitting position went from a frontal, upright position to a more relaxed and reclined one, which resulted in the existing restraint systems cannot to keep occupants safe and secure. This study aimed to determine the effects of different reclining states on occupants' lumbar and neck injuries. METHODS: This is an original research on the field of automotive safety engineering. Occupants in different initial sitting positions (25°, 35°, 45°, and 55°) were adapted to changes in seat back angle and restraint systems and placed in the same frontal impact environment. Neck injury indexes, lumbar axial compression force and acceleration, as well as occupant dynamic response during the impact, were compared in different sitting positions. The injury response and kinematic characteristics of occupants in different reclining positions were analyzed by the control variable method. RESULTS: As the sitting angle increased, the occupant's head acceleration decreased, and the forward-lean angle decreased. Occupants in the standard sitting position had the greatest neck injury, with an Nij of 0.95, and were susceptible to abbreviated injury scale 2+ cervical medullary injuries. As the seatback angle increased, the geometric position of the lumbar spine tended to be horizontal, and the impact load transmitted greater forces to the lumbar spine. The occupant's lumbar injury was greatest in the lying position, with a peak axial compression force on the lumbar region of 5.5 KN, which was 2.3 KN greater than in the standard sitting position. CONCLUSION: The study of occupant lumbar and neck injuries based on different recline states can provide a theoretical basis for optimizing lumbar evaluation indexes, which is conducive to the understanding of the lumbar injury mechanism and the comprehensive consideration of occupant safety protection.
Assuntos
Lesões do Pescoço , Postura , Humanos , Lesões do Pescoço/etiologia , Masculino , Adulto , Acidentes de Trânsito/estatística & dados numéricos , Fenômenos Biomecânicos , Feminino , Vértebras Lombares/lesões , Postura SentadaRESUMO
Imaging capillary isoelectric focusing (icIEF) technology has been becoming the gold criteria of monitoring monoclonal antibody (mAb) charge heterogeneity that is one of the major product-related variants in recombinant biopharmaceuticals, since the first commercial instrument developed twenty years ago. However, the protein identification in icIEF separation is just based on isoelectric point (pI) measurement of protein. Although high resolution mass spectrometry (HRMS) is currently the most powerful means of qualitative protein analysis, traditional icIEF cannot compatibly be used in conjunction with MS due to the use of less volatile reagents. In addition, protein heterogeneity characterization in depth such as peptide mapping by high performance liquid chromatography (HPLC) requires the focused protein bands to be collected as fractions after the icIEF separation, which is a great challenge in biopharmaceutical discovery. In this work, pembrolizumab was employed as targeting mAb (a highly selective anti-PD-1 humanized mAb), an integrated icIEF platform was developed including analytical profiling, MS coupling and fraction collections for charged variant preparation. Multiple operation modes can be rapidly and flexibly switched just by changing customized capillary separation cartridges without more configurations. Main component, four acidic variants (A1-A4) and three basic variants (B1-B3) were baseline separated then directly detected by icIEF-HRMS online coupling for rapid screening of intact protein heterogeneity where reliable and accurate molecular weight of protein charged variants were obtained. Next, by installing preparative capillary separation cartridge, fractions of major charge variants (A2-3 and B1-2) and main component were collected for following LC-MS peptide mapping characterization. The whole workflow of icIEF-based MS strategy for protein heterogeneity is straight forward, reliable and accurate, which provides a comprehensive and revolutionary technology for protein drug quality control (QC) monitoring, MS coupling for fingerprinting intact protein and HPLC-MS peptide mapping in depth.
Assuntos
Anticorpos Monoclonais , Produtos Biológicos , Focalização Isoelétrica , Espectrometria de Massas , Mapeamento de Peptídeos , Controle de QualidadeRESUMO
Recombinant monoclonal antibodies (mAbs) have been spurring the rapid growth of commercial biotherapeutics. During production their charge heterogeneity must be assessed as a critical quality attribute to ensure safety, efficacy, and potency. Although imaged capillary isoelectric focusing (icIEF) is a powerful tool for this process, it could be improved further with tandem high-resolution mass spectrometry (HRMS). In this work, a nano-electrospray ionization (nano-ESI) apparatus was constructed to directly couple icIEF to HRMS. The system was evaluated with the standard NISTmAb, as well as more complex mAb, bi-specific antibody, and fusion protein samples. NISTmAb concentrations as low as 0.25 mg/ml demonstrated excellent sensitivity. There were good repeatabilities at 1 mg/ml with 7.58% and 8.01% RSDs for intention time and MS intensity, respectively, and the HRMS signal showed a strong linearity (R = 0.9983) across different concentrations. Meanwhile, the fingerprinting of the complex samples illustrated the versatility and potential of icIEF-HRMS. icIEF-HRMS developed can provide a comprehensive understanding of the underlying structural modifications that impact protein charge heterogeneity. Compared to the traditional ESI, nano-ESI can significantly improve sensitivity while maintaining a reasonable repeatability and throughput. Furthermore, the interface is much easier to connect, and is compatible with many commercial HRMS instruments.
Assuntos
Focalização Isoelétrica Capilar , Espectrometria de Massas em Tandem , Focalização Isoelétrica , Anticorpos MonoclonaisRESUMO
RATIONALE: Fc-fusion proteins represent a successful class of biopharmaceutical products, which combine the tailored pharmacological properties of biological ligands with the multiple functions of the fragment crystallizable domain of immunoglobulins. There is great diversity in terms of possible biological ligands creating highly diverse structures, therefore the analytical characterization of fusion proteins is far more complex than that of monoclonal antibodies and requires the use and development of additional product-specific methods over conventional generic/platform methods. METHODS: Employing etanercept analogues as studied fusion proteins, the Orbitrap mass analyzer with ultra-high performance liquid chromatography (UHPLC-MS) and imaged capillary isoelectric focusing (icIEF) were utilized for the in-depth fusion protein characterization. RESULTS: The amino acid sequence coverage, peptide mapping, and post-translational modifications of etanercept analogues were analyzed by UHPLC-MS. The post-translational modification results were complemented by imaged capillary isoelectric focusing to produce quality research on etanercept analogues. CONCLUSIONS: The developed workflow integrating UHPLC-MS and icIEF provided an innovative strategy for characterizing complex fusion proteins in the process of quality control and manufacturing.
Assuntos
Focalização Isoelétrica Capilar , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem/métodos , Etanercepte , Anticorpos Monoclonais/análiseRESUMO
Gene therapy holds great promise for treating a multitude of inherited and acquired diseases by delivering functional genes, comprising DNA or RNA, into targeted cells or tissues to elicit manipulation of gene expression. However, the clinical implementation of gene therapy remains substantially impeded by the lack of safe and efficient gene delivery vehicles. This review comprehensively outlines the novel fastest-growing and efficient non-viral gene delivery vectors, which include liposomes and lipid nanoparticles (LNPs), highly branched poly(ß-amino ester) (HPAE), single-chain cyclic polymer (SCKP), poly(amidoamine) (PAMAM) dendrimers, and polyethyleneimine (PEI). Particularly, we discuss the research progress, potential development directions, and remaining challenges. Additionally, we provide a comprehensive overview of the currently approved non-viral gene therapeutics, as well as ongoing clinical trials. With advances in biomedicine, molecular biology, materials science, non-viral gene vectors play an ever-expanding and noteworthy role in clinical gene therapy.
Assuntos
Ésteres , Terapia Genética , Polietilenoimina , Polímeros , RNARESUMO
Extensive efforts have been dedicated to enhancing the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in cancer cells for the development of effective cancer treatments. However, highly safe and efficient delivery of TRAIL gene remains a significant challenge, especially using cationic polymers. Here, a series of highly branched-linear poly(ß-amino ester)s (H-LPAEs) are developed through a unique oligomer branching strategy. H-LPAEs exhibit a more uniform distribution of linear segments and branching units, leading to excellent DNA condensation and favorable physicochemical properties of H-LPAE/DNA polyplexes. In SW1353 and BMSC cells, the optimized H-LPAEs, H-LPAEB4-S5-TMPTA, achieves superior gene transfection efficiency of 58.0% and 33.4%, which were 2.5-fold and 2.0-fold higher than that of the leading commercial gene transfection reagent, Lipofectamine 3000. Excitingly, H-LPAEB4-S5-TMPTA mediated 56.7% and 28.1% cell apoptosis in HepG2 cells and HeLa cells highlighting its potential application in cancer gene therapy. In addition, locally administered H-LPAEB4-S5-TMPTA delivered TRAIL DNA to HepG2 xenograft tumors and inhibited tumor growth in vivo. This study not only proposes a novel strategy for synthesizing poly(ß-amino ester)s with a unique branched-linear topology but also identifies a promising candidate for highly efficient TRAIL gene transfection.
Assuntos
Ésteres , Neoplasias , Humanos , Células HeLa , Ligantes , Transfecção , DNA , Apoptose , Expressão Gênica , Neoplasias/genética , Neoplasias/terapiaRESUMO
Given the good results of deep brain stimulation (DBS) in the treatment of movement disorders, DBS was initially tried to treat Lesch-Nyhan syndrome (LNS) with the aim to alleviate LNS-related dystonia. Some cases have reported clinical results of DBS in LNS thus far. This systematic review was conducted to comprehensively summarize cases of LNS treated with DBS and evaluate the efficacy and safety of DBS in LNS. Eight publications covering 12 LNS patients were included in this review. DBS improved dystonia of the LNS to varying degrees. All the included cases achieved partial or complete control of self-injurious behavior (SIB). Overall, DBS is a promising treatment for both motor and behavior disorders of LNS patients, but the results reported thus far have varied widely, especially for motor outcomes. The ultimate clinical benefits in LNS patients were still unpredictable. DBS-related complications were rather common, which raised questions about the safety of the procedure in LNS. More research is needed to further clarify the safety and effectiveness of this treatment.