RESUMO
Interest in measuring displacement gradients, such as rotation and strain, is growing in many areas of geophysical research. This results in an urgent demand for reliable and field-deployable instruments measuring these quantities. In order to further establish a high-quality standard for rotation and strain measurements in seismology, we organized a comparative sensor test experiment that took place in November 2019 at the Geophysical Observatory of the Ludwig-Maximilians University Munich in Fürstenfeldbruck, Germany. More than 24 different sensors, including three-component and single-component broadband rotational seismometers, six-component strong-motion sensors and Rotaphone systems, as well as the large ring laser gyroscopes ROMY and a Distributed Acoustic Sensing system, were involved in addition to 14 classical broadband seismometers and a 160 channel, 4.5 Hz geophone chain. The experiment consisted of two parts: during the first part, the sensors were co-located in a huddle test recording self-noise and signals from small, nearby explosions. In a second part, the sensors were distributed into the field in various array configurations recording seismic signals that were generated by small amounts of explosive and a Vibroseis truck. This paper presents details on the experimental setup and a first sensor performance comparison focusing on sensor self-noise, signal-to-noise ratios, and waveform similarities for the rotation rate sensors. Most of the sensors show a high level of coherency and waveform similarity within a narrow frequency range between 10 Hz and 20 Hz for recordings from a nearby explosion signal. Sensor as well as experiment design are critically accessed revealing the great need for reliable reference sensors.
RESUMO
The recent rapid development of rotation rate sensor technology opens new opportunities for their application in more and more fields. In this paper, the potential of rotational sensors for the modal analysis of full-scale civil engineering structural elements is experimentally examined. For this purpose, vibrations of two 6-m long beams made of ultra-high performance concrete (UHPC) were measured using microelectromechanical system (MEMS) rotation rate sensors. The beams were excited to vibrations using an impact hammer and a dynamic vibration exciter. The results of the experiment show that by using rotation rate sensors, one can directly obtain derivatives of mode shapes and deflection shapes. These derivatives of mode shapes, often called "rotational modes", bring more information regarding possible local stiffness variations than the traditional transversal and deflection mode shapes, so their extraction during structural health monitoring is particularly useful. Previously, the rotational modes could only be obtained indirectly (e.g., by central difference approximation). Here, with the application of rotation rate sensors, one can obtain rotational modes and deflection shapes with a higher precision. Furthermore, the average strain rate and dynamic strain were acquired using the rotation rate sensors. The laboratory experiments demonstrated that rotation rate sensors were matured enough to be used in the monitoring and modal analyses of full-scale civil engineering elements (e.g., reinforced concrete beams).
RESUMO
Starting with descriptions of rotational seismology, areas of interest and historical field measurements, the fundamental requirements for rotational seismometers for seismological and engineering application are formulated. On the above basis, a review of all existing rotational seismometers is presented with a description of the principles of their operation as well as possibilities to fulfill formulated requirements. This review includes mechanical, acoustical, electrochemical and optical devices and shows that the last of these types are the most promising. It is shown that optical rotational seismometer based on the ring-laser gyroscope concept is the best for seismological applications, whereas systems based on fiber-optic gyroscopes demonstrate parameters which are also required for engineering applications. Laboratory results of the Fibre-Optic System for Rotational Events & Phenomena Monitoring using a small 1-D shaking table modified to generate rotational excitations are presented. The harmonic and time-history tests demonstrate its usefulness for recording rotational motions with rates up to 0.25 rad/s.
RESUMO
The case study presents an assessment of the traffic-induced vibrations on humans and residential buildings, which is important for sustainable development. The analyzed residential building had several cracks in the walls. Control gypsum tapes were applied to all cracks in the building and additional elements near the road to determine the propagation of the damage. To determine the harmfulness of vibrations for humans, vibration acceleration measurements linked to road traffic inside the analyzed building were carried out. The vibration velocities inside the object were set based on the integration of the obtained accelerations. The experimental field investigation was carried out in places where humans commonly stayed (on the first floor) at the points where the vibrations are transmitted from the construction to humans. The study involved a time history analysis, a Fast Fourier Transform (FFT) analysis, and Root Mean Square (RMS) acceleration and velocity in a one-third octave bands spectrum. Based on the conducted experimental tests, it can be pointed out that the received velocity values in the tested building, caused by the passage of various vehicles, were below the permissible levels. However, it was noticed that the distance between the building and the fence had an important role in damping vibrations emitted by passing vehicles. The presented case study may be of use to other researchers who will be involved in similar cases and want to include sustainable infrastructure development.