Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Res ; 45(1): 68-82, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31664654

RESUMO

Hapln4 is a link protein which stabilizes the binding between lecticans and hyaluronan in perineuronal nets (PNNs) in specific brain regions, including the medial nucleus of the trapezoid body (MNTB). The aim of this study was: (1) to reveal possible age-related alterations in the extracellular matrix composition in the MNTB and inferior colliculus, which was devoid of Hapln4 and served as a negative control, (2) to determine the impact of the Hapln4 deletion on the values of the ECS diffusion parameters in young and aged animals and (3) to verify that PNNs moderate age-related changes in the ECS diffusion, and that Hapln4-brevican complex is indispensable for the correct protective function of the PNNs. To achieve this, we evaluated the ECS diffusion parameters using the real-time iontophoretic method in the selected region in young adult (3 to 6-months-old) and aged (12 to 18-months-old) wild type and Hapln4 knock-out (KO) mice. The results were correlated with an immunohistochemical analysis of the ECM composition and astrocyte morphology. We report that the ECM composition is altered in the aged MNTB and aging is a critical point, revealing the effect of Hapln4 deficiency on the ECS diffusion. All of our findings support the hypothesis that the ECM changes in the MNTB of aged KO animals affect the ECS parameters indirectly, via morphological changes of astrocytes, which are in direct contact with synapses and can be influenced by the ongoing synaptic transmission altered by shifts in the ECM composition.


Assuntos
Envelhecimento/metabolismo , Vias Auditivas/metabolismo , Difusão , Proteínas da Matriz Extracelular/deficiência , Espaço Extracelular/metabolismo , Proteínas do Tecido Nervoso/deficiência , Corpo Trapezoide/metabolismo , Envelhecimento/patologia , Animais , Vias Auditivas/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Nervos Periféricos/metabolismo , Nervos Periféricos/patologia , Deficiência de Proteína/metabolismo , Deficiência de Proteína/patologia , Corpo Trapezoide/patologia
2.
Eur J Neurosci ; 50(1): 1685-1699, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30633415

RESUMO

The proper function of the nervous system is dependent on the balance of ions and water between the intracellular and extracellular space (ECS). It has been suggested that the interaction of aquaporin-4 (AQP4) and the transient receptor potential vaniloid isoform 4 (TRPV4) channels play a role in water balance and cell volume regulation, and indirectly, of the ECS volume. Using the real-time iontophoretic method, we studied the changes of the ECS diffusion parameters: ECS volume fraction α (α = ECS volume fraction/total tissue volume) and tortuosity λ (λ2  = free/apparent diffusion coefficient) in mice with a genetic deficiency of AQP4 or TRPV4 channels, and in control animals. The used models of cytotoxic edema included: mild and severe hypotonic stress or oxygen-glucose deprivation (OGD) in situ and terminal ischemia/anoxia in vivo. This study shows that an AQP4 or TRPV4 deficit slows down the ECS volume shrinkage during severe ischemia in vivo. We further demonstrate that a TRPV4 deficit slows down the velocity and attenuates an extent of the ECS volume decrease during OGD treatment in situ. However, in any of the cytotoxic edema models in situ (OGD, mild or severe hypotonic stress), we did not detect any alterations in the cell swelling or volume regulation caused by AQP4 deficiency. Overall, our results indicate that the AQP4 and TRPV4 channels may play a crucial role in severe pathological states associated with their overexpression and enhanced cell swelling. However, detailed interplay between AQP4 and TRPV4 channels requires further studies and additional research.


Assuntos
Aquaporina 4/metabolismo , Edema Encefálico/metabolismo , Espaço Extracelular/metabolismo , Córtex Somatossensorial/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Aquaporina 4/deficiência , Modelos Animais de Doenças , Eletrocardiografia , Feminino , Parada Cardíaca/metabolismo , Hipoglicemia/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Potássio/metabolismo , Canais de Cátion TRPV/deficiência
3.
Front Neurosci ; 17: 1152578, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37425017

RESUMO

Introduction: Psilocybin is one of the most extensively studied psychedelic drugs with a broad therapeutic potential. Despite the fact that its psychoactivity is mainly attributed to the agonism at 5-HT2A receptors, it has high binding affinity also to 5-HT2C and 5-HT1A receptors and indirectly modulates the dopaminergic system. Psilocybin and its active metabolite psilocin, as well as other serotonergic psychedelics, induce broadband desynchronization and disconnection in EEG in humans as well as in animals. The contribution of serotonergic and dopaminergic mechanisms underlying these changes is not clear. The present study thus aims to elucidate the pharmacological mechanisms underlying psilocin-induced broadband desynchronization and disconnection in an animal model. Methods: Selective antagonists of serotonin receptors (5-HT1A WAY100635, 5-HT2A MDL100907, 5-HT2C SB242084) and antipsychotics haloperidol, a D2 antagonist, and clozapine, a mixed D2 and 5-HT receptor antagonist, were used in order to clarify the underlying pharmacology. Results: Psilocin-induced broadband decrease in the mean absolute EEG power was normalized by all antagonists and antipsychotics used within the frequency range 1-25 Hz; however, decreases in 25-40 Hz were influenced only by clozapine. Psilocin-induced decrease in global functional connectivity and, specifically, fronto-temporal disconnection were reversed by the 5-HT2A antagonist while other drugs had no effect. Discussion: These findings suggest the involvement of all three serotonergic receptors studied as well as the role of dopaminergic mechanisms in power spectra/current density with only the 5-HT2A receptor being effective in both studied metrics. This opens an important discussion on the role of other than 5-HT2A-dependent mechanisms underlying the neurobiology of psychedelics.

4.
Cell Transplant ; 28(4): 400-412, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30654639

RESUMO

Spinal cord injury (SCI), is a devastating condition leading to the loss of locomotor and sensory function below the injured segment. Despite some progress in acute SCI treatment using stem cells and biomaterials, chronic SCI remains to be addressed. We have assessed the use of laminin-coated hydrogel with dual porosity, seeded with induced pluripotent stem cell-derived neural progenitors (iPSC-NPs), in a rat model of chronic SCI. iPSC-NPs cultured for 3 weeks in hydrogel in vitro were positive for nestin, glial fibrillary acidic protein (GFAP) and microtubule-associated protein 2 (MAP2). These cell-polymer constructs were implanted into a balloon compression lesion, 5 weeks after lesion induction. Animals were behaviorally tested, and spinal cord tissue was immunohistochemically analyzed 28 weeks after SCI. The implanted iPSC-NPs survived in the scaffold for the entire experimental period. Host axons, astrocytes and blood vessels grew into the implant and an increased sprouting of host TH+ fibers was observed in the lesion vicinity. The implantation of iPSC-NP-LHM cell-polymer construct into the chronic SCI led to the integration of material into the injured spinal cord, reduced cavitation and supported the iPSC-NPs survival, but did not result in a statistically significant improvement of locomotor recovery.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/transplante , Traumatismos da Medula Espinal/terapia , Animais , Diferenciação Celular , Doença Crônica , Hidrogéis , Masculino , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa