Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 487: 42-56, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35429490

RESUMO

In mammalian development, oscillatory activation of Notch signaling is required for segmentation clock function during somitogenesis. Notch activity oscillations are synchronized between neighboring cells in the presomitic mesoderm (PSM) and have a period that matches the rate of somite formation. Normal clock function requires cyclic expression of the Lunatic fringe (LFNG) glycosyltransferase, as well as expression of the inhibitory Notch ligand Delta-like 3 (DLL3). How these factors coordinate Notch activation in the clock is not well understood. Recent evidence suggests that LFNG can act in a signal-sending cell to influence Notch activity in the clock, raising the possibility that in this context, glycosylation of Notch pathway proteins by LFNG may affect ligand activity. Here we dissect the genetic interactions of Lfng and Dll3 specifically in the segmentation clock and observe distinctions in the skeletal and clock phenotypes of mutant embryos showing that paradoxically, loss of Dll3 is associated with strong reductions in Notch activity in the caudal PSM. The patterns of Notch activity in the PSM suggest that the loss of Dll3 is epistatic to the loss of Lfng in the segmentation clock, and we present direct evidence for the modification of several DLL1 and DLL3 EGF-repeats by LFNG. We further demonstrate that DLL3 expression in cells co-expressing DLL1 and NOTCH1 can potentiate a cell's signal-sending activity and that this effect is modulated by LFNG, suggesting a mechanism for coordinated regulation of oscillatory Notch activation in the clock by glycosylation and cis-inhibition.


Assuntos
Receptores Notch , Somitos , Animais , Regulação da Expressão Gênica no Desenvolvimento , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Ligantes , Mamíferos/genética , Mesoderma/metabolismo , Receptores Notch/metabolismo , Somitos/metabolismo
2.
Semin Cell Dev Biol ; 49: 68-75, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25483003

RESUMO

The embryonic vertebrate body axis contains serially repeated elements, somites, which form sequentially by budding from a posterior tissue called the presomitic mesoderm (PSM). Somites are the embryonic precursors of the vertebrae, ribs and other adult structures. Many inherited human diseases are characterized by dysregulated somitogenesis, resulting in skeletal abnormalities that are evident at birth. Several of these conditions, including some cases of autosomal recessive familial spondylocostal dysostosis (SCDO), arise from mutations in the Notch signaling pathway, which has been demonstrated to be a key player in the regulation of somitogenesis. Here, we review the functional roles of the Notch pathway in vertebrate segmentation, focusing on its activities in a clock that times the formation of somites, as well as in the patterning and production of epithelial somites.


Assuntos
Receptores Notch/fisiologia , Transdução de Sinais , Somitos/embriologia , Animais , Padronização Corporal , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Somitos/metabolismo
3.
Elife ; 72018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29629872

RESUMO

Notch signalling maintains stem cell regeneration at the mouse intestinal crypt base and balances the absorptive and secretory lineages in the upper crypt and villus. Here we report the role of Fringe family of glycosyltransferases in modulating Notch activity in the two compartments. At the crypt base, RFNG is enriched in the Paneth cells and increases cell surface expression of DLL1 and DLL4. This promotes Notch activity in the neighbouring Lgr5+ stem cells assisting their self-renewal. Expressed by various secretory cells in the upper crypt and villus, LFNG promotes DLL surface expression and suppresses the secretory lineage . Hence, in the intestinal epithelium, Fringes are present in the ligand-presenting 'sender' secretory cells and promote Notch activity in the neighbouring 'receiver' cells. Fringes thereby provide for targeted modulation of Notch activity and thus the cell fate in the stem cell zone, or the upper crypt and villus.


Assuntos
Homeostase , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Intestinos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Receptores Notch/metabolismo , Células-Tronco/citologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ligação ao Cálcio , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Glucosiltransferases , Glicosiltransferases , Peptídeos e Proteínas de Sinalização Intercelular/genética , Intestinos/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Receptores Notch/genética , Transdução de Sinais , Células-Tronco/metabolismo
4.
Nat Cell Biol ; 18(1): 7-20, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26641715

RESUMO

Ventricular chambers are essential for the rhythmic contraction and relaxation occurring in every heartbeat throughout life. Congenital abnormalities in ventricular chamber formation cause severe human heart defects. How the early trabecular meshwork of myocardial fibres forms and subsequently develops into mature chambers is poorly understood. We show that Notch signalling first connects chamber endocardium and myocardium to sustain trabeculation, and later coordinates ventricular patterning and compaction with coronary vessel development to generate the mature chamber, through a temporal sequence of ligand signalling determined by the glycosyltransferase manic fringe (MFng). Early endocardial expression of MFng promotes Dll4-Notch1 signalling, which induces trabeculation in the developing ventricle. Ventricular maturation and compaction require MFng and Dll4 downregulation in the endocardium, which allows myocardial Jag1 and Jag2 signalling to Notch1 in this tissue. Perturbation of this signalling equilibrium severely disrupts heart chamber formation. Our results open a new research avenue into the pathogenesis of cardiomyopathies.


Assuntos
Ventrículos do Coração/metabolismo , Organogênese/fisiologia , Receptores Notch/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Glucosiltransferases , Ventrículos do Coração/embriologia , Hexosiltransferases/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligantes , Proteínas de Membrana/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais/fisiologia
5.
Dev Cell ; 24(5): 554-61, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23484856

RESUMO

Somites are embryonic precursors of the axial skeleton and skeletal muscles and establish the segmental vertebrate body plan. Somitogenesis is controlled in part by a segmentation clock that requires oscillatory expression of genes including Lunatic fringe (Lfng). Oscillatory genes must be tightly regulated at both the transcriptional and posttranscriptional levels for proper clock function. Here, we demonstrate that microRNA-mediated regulation of Lfng is essential for proper segmentation during chick somitogenesis. We find that mir-125a-5p targets evolutionarily conserved sequences in the Lfng 3' UTR and that preventing interactions between mir-125a-5p and Lfng transcripts in vivo causes abnormal segmentation and perturbs clock activity. This provides strong evidence that microRNAs function in the posttranscriptional regulation of oscillatory genes in the segmentation clock. Further, this demonstrates that the relatively subtle effects of microRNAs on target genes can have broad effects in developmental situations that have critical requirements for tight posttranscriptional regulation.


Assuntos
Regiões 3' não Traduzidas/genética , Proteínas Aviárias/genética , Relógios Biológicos/genética , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Glicosiltransferases/genética , MicroRNAs/genética , Somitos/metabolismo , Animais , Embrião de Galinha , Hibridização In Situ , Mesoderma/citologia , Mesoderma/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Somitos/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa