Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Cell ; 164(1-2): 91-102, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26709046

RESUMO

Eukaryotic ribosome biogenesis depends on several hundred assembly factors to produce functional 40S and 60S ribosomal subunits. The final phase of 60S subunit biogenesis is cytoplasmic maturation, which includes the proofreading of functional centers of the 60S subunit and the release of several ribosome biogenesis factors. We report the cryo-electron microscopy (cryo-EM) structure of the yeast 60S subunit in complex with the biogenesis factors Rei1, Arx1, and Alb1 at 3.4 Å resolution. In addition to the network of interactions formed by Alb1, the structure reveals a mechanism for ensuring the integrity of the ribosomal polypeptide exit tunnel. Arx1 probes the entire set of inner-ring proteins surrounding the tunnel exit, and the C terminus of Rei1 is deeply inserted into the ribosomal tunnel, where it forms specific contacts along almost its entire length. We provide genetic and biochemical evidence that failure to insert the C terminus of Rei1 precludes subsequent steps of 60S maturation.


Assuntos
Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Chaetomium/metabolismo , Microscopia Crioeletrônica , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Alinhamento de Sequência
2.
Cell ; 158(5): 1123-1135, 2014 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-25171412

RESUMO

Eukaryotic translation initiation requires the recruitment of the large, multiprotein eIF3 complex to the 40S ribosomal subunit. We present X-ray structures of all major components of the minimal, six-subunit Saccharomyces cerevisiae eIF3 core. These structures, together with electron microscopy reconstructions, cross-linking coupled to mass spectrometry, and integrative structure modeling, allowed us to position and orient all eIF3 components on the 40S⋅eIF1 complex, revealing an extended, modular arrangement of eIF3 subunits. Yeast eIF3 engages 40S in a clamp-like manner, fully encircling 40S to position key initiation factors on opposite ends of the mRNA channel, providing a platform for the recruitment, assembly, and regulation of the translation initiation machinery. The structures of eIF3 components reported here also have implications for understanding the architecture of the mammalian 43S preinitiation complex and the complex of eIF3, 40S, and the hepatitis C internal ribosomal entry site RNA.


Assuntos
Fator de Iniciação 1 em Eucariotos/química , Fator de Iniciação 3 em Eucariotos/química , Iniciação Traducional da Cadeia Peptídica , Subunidades Ribossômicas Menores de Eucariotos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Dimerização , Fator de Iniciação 1 em Eucariotos/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Hepacivirus/química , Humanos , Mamíferos/metabolismo , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Ribonucleoproteínas/química , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
3.
Mol Cell ; 80(6): 980-995.e13, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33202249

RESUMO

Ribosomes have been suggested to directly control gene regulation, but regulatory roles for ribosomal RNA (rRNA) remain largely unexplored. Expansion segments (ESs) consist of multitudes of tentacle-like rRNA structures extending from the core ribosome in eukaryotes. ESs are remarkably variable in sequence and size across eukaryotic evolution with largely unknown functions. In characterizing ribosome binding to a regulatory element within a Homeobox (Hox) 5' UTR, we identify a modular stem-loop within this element that binds to a single ES, ES9S. Engineering chimeric, "humanized" yeast ribosomes for ES9S reveals that an evolutionary change in the sequence of ES9S endows species-specific binding of Hoxa9 mRNA to the ribosome. Genome editing to site-specifically disrupt the Hoxa9-ES9S interaction demonstrates the functional importance for such selective mRNA-rRNA binding in translation control. Together, these studies unravel unexpected gene regulation directly mediated by rRNA and how ribosome evolution drives translation of critical developmental regulators.


Assuntos
Proteínas de Homeodomínio/genética , Biossíntese de Proteínas/genética , RNA Ribossômico/ultraestrutura , Ribossomos/genética , Regiões 5' não Traduzidas/genética , Regulação da Expressão Gênica/genética , Genes Homeobox/genética , Proteínas de Homeodomínio/ultraestrutura , Conformação de Ácido Nucleico , RNA Mensageiro/genética , RNA Ribossômico/genética , Ribossomos/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Especificidade da Espécie
4.
Mol Cell ; 79(4): 629-644.e4, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32679035

RESUMO

In contrast to the bacterial translation machinery, mitoribosomes and mitochondrial translation factors are highly divergent in terms of composition and architecture. There is increasing evidence that the biogenesis of mitoribosomes is an intricate pathway, involving many assembly factors. To better understand this process, we investigated native assembly intermediates of the mitoribosomal large subunit from the human parasite Trypanosoma brucei using cryo-electron microscopy. We identify 28 assembly factors, 6 of which are homologous to bacterial and eukaryotic ribosome assembly factors. They interact with the partially folded rRNA by specifically recognizing functionally important regions such as the peptidyltransferase center. The architectural and compositional comparison of the assembly intermediates indicates a stepwise modular assembly process, during which the rRNA folds toward its mature state. During the process, several conserved GTPases and a helicase form highly intertwined interaction networks that stabilize distinct assembly intermediates. The presented structures provide general insights into mitoribosomal maturation.


Assuntos
Ribossomos Mitocondriais/química , RNA Ribossômico/metabolismo , Subunidades Ribossômicas Maiores/química , Trypanosoma brucei brucei/metabolismo , Microscopia Crioeletrônica , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Ribossomos Mitocondriais/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Ribossômico/química , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores/metabolismo , Trypanosoma brucei brucei/genética
5.
Nat Chem Biol ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467846

RESUMO

Phase transitions are important to understand cell dynamics, and the maturation of liquid droplets is relevant to neurodegenerative disorders. We combined NMR and Raman spectroscopies with microscopy to follow, over a period of days to months, droplet maturation of the protein fused in sarcoma (FUS). Our study reveals that the surface of the droplets plays a critical role in this process, while RNA binding prevents it. The maturation kinetics are faster in an agarose-stabilized biphasic sample compared with a monophasic condensed sample, owing to the larger surface-to-volume ratio. In addition, Raman spectroscopy reports structural differences upon maturation between the inside and the surface of droplets, which is comprised of ß-sheet content, as revealed by solid-state NMR. In agreement with these observations, a solid crust-like shell is observed at the surface using microaspiration. Ultimately, matured droplets were converted into fibrils involving the prion-like domain as well as the first RGG motif.

6.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042777

RESUMO

Mitochondrial ribosomes (mitoribosomes) play a central role in synthesizing mitochondrial inner membrane proteins responsible for oxidative phosphorylation. Although mitoribosomes from different organisms exhibit considerable structural variations, recent insights into mitoribosome assembly suggest that mitoribosome maturation follows common principles and involves a number of conserved assembly factors. To investigate the steps involved in the assembly of the mitoribosomal small subunit (mt-SSU) we determined the cryoelectron microscopy structures of middle and late assembly intermediates of the Trypanosoma brucei mitochondrial small subunit (mt-SSU) at 3.6- and 3.7-Å resolution, respectively. We identified five additional assembly factors that together with the mitochondrial initiation factor 2 (mt-IF-2) specifically interact with functionally important regions of the rRNA, including the decoding center, thereby preventing premature mRNA or large subunit binding. Structural comparison of assembly intermediates with mature mt-SSU combined with RNAi experiments suggests a noncanonical role of mt-IF-2 and a stepwise assembly process, where modular exchange of ribosomal proteins and assembly factors together with mt-IF-2 ensure proper 9S rRNA folding and protein maturation during the final steps of assembly.


Assuntos
Proteínas Mitocondriais/química , Ribossomos Mitocondriais/química , Fosforilação Oxidativa , RNA Ribossômico/química , Proteínas Ribossômicas/química , Subunidades Ribossômicas/química , Linhagem Celular , Microscopia Crioeletrônica , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , Modelos Moleculares , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas/genética , Subunidades Ribossômicas/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
8.
Nature ; 560(7717): 263-267, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089917

RESUMO

Mitochondria maintain their own specialized protein synthesis machinery, which in mammals is used exclusively for the synthesis of the membrane proteins responsible for oxidative phosphorylation1,2. The initiation of protein synthesis in mitochondria differs substantially from bacterial or cytosolic translation systems. Mitochondrial translation initiation lacks initiation factor 1, which is essential in all other translation systems from bacteria to mammals3,4. Furthermore, only one type of methionyl transfer RNA (tRNAMet) is used for both initiation and elongation4,5, necessitating that the initiation factor specifically recognizes the formylated version of tRNAMet (fMet-tRNAMet). Lastly, most mitochondrial mRNAs do not possess 5' leader sequences to promote mRNA binding to the ribosome2. There is currently little mechanistic insight into mammalian mitochondrial translation initiation, and it is not clear how mRNA engagement, initiator-tRNA recruitment and start-codon selection occur. Here we determine the cryo-EM structure of the complete translation initiation complex from mammalian mitochondria at 3.2 Å. We describe the function of an additional domain insertion that is present in the mammalian mitochondrial initiation factor 2 (mtIF2). By closing the decoding centre, this insertion stabilizes the binding of leaderless mRNAs and induces conformational changes in the rRNA nucleotides involved in decoding. We identify unique features of mtIF2 that are required for specific recognition of fMet-tRNAMet and regulation of its GTPase activity. Finally, we observe that the ribosomal tunnel in the initiating ribosome is blocked by insertion of the N-terminal portion of mitochondrial protein mL45, which becomes exposed as the ribosome switches to elongation mode and may have an additional role in targeting of mitochondrial ribosomes to the protein-conducting pore in the inner mitochondrial membrane.


Assuntos
Microscopia Crioeletrônica , Mamíferos , Mitocôndrias/ultraestrutura , Iniciação Traducional da Cadeia Peptídica , Animais , Códon de Iniciação/genética , Fatores de Iniciação em Eucariotos/química , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/ultraestrutura , Mitocôndrias/química , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/ultraestrutura , Modelos Moleculares , RNA Mitocondrial/química , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA Mitocondrial/ultraestrutura , RNA de Transferência de Metionina/genética , RNA de Transferência de Metionina/metabolismo , RNA de Transferência de Metionina/ultraestrutura
9.
Nucleic Acids Res ; 50(11): 6300-6312, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35687109

RESUMO

Heterogenous nuclear ribonucleoproteins (hnRNPs) are abundant proteins implicated in various steps of RNA processing that assemble on nuclear RNA into larger complexes termed 40S hnRNP particles. Despite their initial discovery 55 years ago, our understanding of these intriguing macromolecular assemblies remains limited. Here, we report the biochemical purification of native 40S hnRNP particles and the determination of their complete protein composition by label-free quantitative mass spectrometry, identifying A-group and C-group hnRNPs as the major protein constituents. Isolated 40S hnRNP particles dissociate upon RNA digestion and can be reconstituted in vitro on defined RNAs in the presence of the individual protein components, demonstrating a scaffolding role for RNA in nucleating particle formation. Finally, we revealed their nanometer scale, condensate-like nature, promoted by intrinsically disordered regions of A-group hnRNPs. Collectively, we identify nuclear 40S hnRNP particles as novel dynamic biomolecular condensates.


Assuntos
Condensados Biomoleculares , Ribonucleoproteínas Nucleares Heterogêneas , Núcleo Celular/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , RNA/metabolismo
10.
EMBO Rep ; 22(11): e52981, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34647674

RESUMO

The human GID (hGID) complex is a conserved E3 ubiquitin ligase regulating diverse biological processes, including glucose metabolism and cell cycle progression. However, the biochemical function and substrate recognition of the multi-subunit complex remain poorly understood. Using biochemical assays, cross-linking mass spectrometry, and cryo-electron microscopy, we show that hGID engages two distinct modules for substrate recruitment, dependent on either WDR26 or GID4. WDR26 and RanBP9 cooperate to ubiquitinate HBP1 in vitro, while GID4 is dispensable for this reaction. In contrast, GID4 functions as an adaptor for the substrate ZMYND19, which surprisingly lacks a Pro/N-end degron. GID4 substrate binding and ligase activity is regulated by ARMC8α, while the shorter ARMC8ß isoform assembles into a stable hGID complex that is unable to recruit GID4. Cryo-EM reconstructions of these hGID complexes reveal the localization of WDR26 within a ring-like, tetrameric architecture and suggest that GID4 and WDR26/Gid7 utilize different, non-overlapping binding sites. Together, these data advance our mechanistic understanding of how the hGID complex recruits cognate substrates and provides insights into the regulation of its E3 ligase activity.


Assuntos
Proteínas de Grupo de Alta Mobilidade , Ubiquitina-Proteína Ligases , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Microscopia Crioeletrônica , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Proteínas Repressoras/metabolismo , Especificidade por Substrato , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
11.
Graefes Arch Clin Exp Ophthalmol ; 261(4): 1159-1166, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36255550

RESUMO

PURPOSE: We herein compare topical interferon alpha 2b (IFN-α2b) to topical mitomycin C (MMC) in the adjuvant management after excision of primary acquired melanosis with atypia (PAM) and melanoma of the conjunctiva/cornea (CM). METHODS: We included 25 tumors from 25 patients (six with PAM and 19 with CM). After surgical excision, four patients started with adjuvant IFN-α2b (two in combination with radiotherapy), 19 with MMC, and two with radiotherapy alone. Five patients were switched from initial MMC/radiotherapy to IFN-α2b during follow-up. Efficacy was assessed via time to tumor recurrence and initial therapy response. RESULTS: With initial IFN-α2b, three patients (3/4, two with additional radiotherapy) showed complete remission (follow-up: 1478-1750 days) and one recurrence (1/4) was noted after 492 days. With initial MMC, no recurrence was recorded in 15 of the 19 patients (follow-up: 99-4732 days). Five patients were switched from MMC or radiotherapy to IFN-α2b: two patients showed complete remission (2/5), while another two (2/5) experienced recurrences and remained without recurrence after repeated courses of IFN-α2b (follow-up: 1798 and 1973 days). Only one patient showed incomplete response. Adverse effects were recorded in five patients, all received MMC. CONCLUSION: Topical IFN-α2b (arguably together with radiotherapy) may be a viable alternative to MMC in PAM and CM. We observed fewer side effects at similar response rates. However, when response to MMC was poor, IFN-α2b may also be of limited utility.


Assuntos
Neoplasias da Túnica Conjuntiva , Melanose , Humanos , Mitomicina , Neoplasias da Túnica Conjuntiva/tratamento farmacológico , Neoplasias da Túnica Conjuntiva/patologia , Melanose/diagnóstico , Melanose/tratamento farmacológico , Recidiva Local de Neoplasia , Interferon-alfa/uso terapêutico , Adjuvantes Imunológicos
12.
Nucleic Acids Res ; 49(11): 6389-6398, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34086932

RESUMO

Biogenesis of ribosomal subunits involves enzymatic modifications of rRNA that fine-tune functionally important regions. The universally conserved prokaryotic dimethyltransferase KsgA sequentially modifies two universally conserved adenosine residues in helix 45 of the small ribosomal subunit rRNA, which is in proximity of the decoding site. Here we present the cryo-EM structure of Escherichia coli KsgA bound to an E. coli 30S at a resolution of 3.1 Å. The high-resolution structure reveals how KsgA recognizes immature rRNA and binds helix 45 in a conformation where one of the substrate nucleotides is flipped-out into the active site. We suggest that successive processing of two adjacent nucleotides involves base-flipping of the rRNA, which allows modification of the second substrate nucleotide without dissociation of the enzyme. Since KsgA is homologous to the essential eukaryotic methyltransferase Dim1 involved in 40S maturation, these results have also implications for understanding eukaryotic ribosome maturation.


Assuntos
Adenosina/metabolismo , Escherichia coli/enzimologia , Metiltransferases/química , Adenosina/química , Microscopia Crioeletrônica , Metiltransferases/metabolismo , Modelos Moleculares , Conformação Proteica , Subunidades Ribossômicas Menores de Bactérias/química , Especificidade por Substrato
13.
Nucleic Acids Res ; 49(11): e63, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33677607

RESUMO

U1 small nuclear ribonucleoparticle (U1 snRNP) plays a central role during RNA processing. Previous structures of U1 snRNP revealed how the ribonucleoparticle is organized and recognizes the pre-mRNA substrate at the exon-intron junction. As with many other ribonucleoparticles involved in RNA metabolism, U1 snRNP contains extensions made of low complexity sequences. Here, we developed a protocol to reconstitute U1 snRNP in vitro using mostly full-length components in order to perform liquid-state NMR spectroscopy. The accuracy of the reconstitution was validated by probing the shape and structure of the particle by SANS and cryo-EM. Using an NMR spectroscopy-based approach, we probed, for the first time, the U1 snRNP tails at atomic detail and our results confirm their high degree of flexibility. We also monitored the labile interaction between the splicing factor PTBP1 and U1 snRNP and validated the U1 snRNA stem loop 4 as a binding site for the splicing regulator on the ribonucleoparticle. Altogether, we developed a method to probe the intrinsically disordered regions of U1 snRNP and map the interactions controlling splicing regulation. This approach could be used to get insights into the molecular mechanisms of alternative splicing and screen for potential RNA therapeutics.


Assuntos
Ribonucleoproteína Nuclear Pequena U1/química , Sítios de Ligação , Ligantes , Espectroscopia de Ressonância Magnética , Fatores de Processamento de RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo
14.
Int Ophthalmol ; 43(7): 2397-2405, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36670265

RESUMO

PURPOSE: Single center study to evaluate the incidence and long-term outcome of laser pointer maculopathy (LPM). METHODS: Medical records of 909,150 patients visiting our institution between 2007 and 2020 were screened in our electronic patient record system using the keywords "laserpointer," "laser pointer," and "solar." RESULTS: Eight patients (6/2 male/female, 11 eyes) with a history of LPM were identified by fundoscopy and optical coherence tomography (OCT), all of whom were children (6/2 male/female). Mean age at injury was 12.1 years (range 6-16). Five children (62.5%) were injured between 2019 and 2020, three (37.5%) between 2007 and 2018. Median best-corrected visual acuity (BCVA) of affected eyes at first presentation was 20/25 (range 20/50-20/16). Follow-up examination was performed in seven children (10 eyes) with a median follow-up period of 18 months (range 0.5-96). BCVA improved in 4 children (5 eyes; BCVA at follow-up 20/22.5, range 20/40-20/16). Three of these four children were treated with oral steroids. OCT revealed acute signs such as intraretinal fluid to resolve quickly, while outer retinal disruption persisted until the last follow-up in eight of eleven eyes. These lesions resembled lesions of patients with solar retinopathy of which seven cases (11 eyes) were identified between 2007 and 2020. CONCLUSION: Readily available consumer laser pointers can damage the retina and the underlying retinal pigment epithelium, possibly leading to long-lasting visual impairments. The number of laser pointer injuries has increased over the last years. Therefore, access to laser pointers for children should be strictly controlled.


Assuntos
Degeneração Macular , Doenças Retinianas , Humanos , Feminino , Masculino , Criança , Adolescente , Incidência , Acuidade Visual , Doenças Retinianas/diagnóstico , Doenças Retinianas/epidemiologia , Doenças Retinianas/etiologia , Lasers , Degeneração Macular/complicações , Tomografia de Coerência Óptica/métodos
15.
Int Ophthalmol ; 43(12): 4551-4562, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37684398

RESUMO

PURPOSE: Hypoxia-inducible factors (HIFs) are considered to play a significant role in the pathogenesis of pterygium. The aim of this study was to investigate the relative expression or immunoreactivity of HIF1α and HIF2α in the epithelium of primary pterygium, recurrences and healthy conjunctiva. METHODS: Immunohistochemical staining was performed with antibodies against HIF1α and HIF2α, respectively, on 55/84 primary pterygium specimens, 6/28 recurrences and 20/20 control tissues (healthy conjunctiva). RESULTS: Immunohistochemical staining revealed lower epithelial immunoreactivity of HIF1α and HIF2α in both primary pterygium (11% and 38%) and recurrences (18% and 21%) when compared to healthy conjunctival tissue (46% and 66%). Differences between immunoreactivity of HIF1α and of HIF2α in primary pterygium and controls were each highly significant (p < .001). Within the group of primary pterygium, epithelial immunoreactivity of HIF2α (38%) was significantly higher than that of HIF1α (11%). In recurrent pterygium and healthy conjunctiva, immunoreactivity levels of HIF2α were higher than those of HIF1α as well; however, differences between both isoforms were not significant. CONCLUSION: Our study shows evidence that the higher expressed epithelial HIF2α, rather than HIF1α, and the balance between both HIF isoforms might be relevant factors associated with pathogenesis of primary pterygium. Modulation of HIF2α levels and activity may thus offer a new therapeutic approach to the treatment of advancing pterygium where the initial stage with its HIF1-peak has already passed.


Assuntos
Pterígio , Humanos , Pterígio/metabolismo , Epitélio/patologia , Túnica Conjuntiva/patologia , Isoformas de Proteínas/metabolismo
16.
J Struct Biol ; 213(1): 107677, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33307178

RESUMO

Support films are commonly used during cryo-EM specimen preparation to both immobilise the sample and minimise the exposure of particles at the air-water interface. Here we report preparation protocols for carbon and graphene supported single particle electron microscopy samples using a novel 3D-printed sample transfer block to facilitate the direct, wetted, movement of both carbon and graphene supports from the substrate on which they were generated to small volumes (10 µL) of sample. These approaches are simple and inexpensive to implement, minimise hydrophobic contamination of the support films, and are widely applicable to single particle studies. Our approach also allows the direct exchange of the sample buffer on the support film in cases in which it is unsuitable for vitrification, e.g. for samples from centrifugal density gradients that help to preserve sample integrity.


Assuntos
Carbono/química , Microscopia Crioeletrônica/métodos , Grafite/química , Manejo de Espécimes/métodos , Vitrificação
17.
EMBO J ; 36(4): 475-486, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28007896

RESUMO

Chloroplasts are cellular organelles of plants and algae that are responsible for energy conversion and carbon fixation by the photosynthetic reaction. As a consequence of their endosymbiotic origin, they still contain their own genome and the machinery for protein biosynthesis. Here, we present the atomic structure of the chloroplast 70S ribosome prepared from spinach leaves and resolved by cryo-EM at 3.4 Å resolution. The complete structure reveals the features of the 4.5S rRNA, which probably evolved by the fragmentation of the 23S rRNA, and all five plastid-specific ribosomal proteins. These proteins, required for proper assembly and function of the chloroplast translation machinery, bind and stabilize rRNA including regions that only exist in the chloroplast ribosome. Furthermore, the structure reveals plastid-specific extensions of ribosomal proteins that extensively remodel the mRNA entry and exit site on the small subunit as well as the polypeptide tunnel exit and the putative binding site of the signal recognition particle on the large subunit. The translation factor pY, involved in light- and temperature-dependent control of protein synthesis, is bound to the mRNA channel of the small subunit and interacts with 16S rRNA nucleotides at the A-site and P-site, where it protects the decoding centre and inhibits translation by preventing tRNA binding. The small subunit is locked by pY in a non-rotated state, in which the intersubunit bridges to the large subunit are stabilized.


Assuntos
Cloroplastos , Ribossomos/química , Ribossomos/ultraestrutura , Spinacia oleracea , Microscopia Crioeletrônica , Modelos Moleculares , RNA Ribossômico/química , RNA Ribossômico/ultraestrutura , Proteínas Ribossômicas/química , Proteínas Ribossômicas/ultraestrutura
18.
Retina ; 41(9): 1948-1957, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33438899

RESUMO

PURPOSE: To quantify retinal vasculature changes in Stargardt disease1 (STGD1) with volume-rendered optical coherence tomography angiography. METHODS: Optical coherence tomography angiography volumes from healthy subjects and two subgroups of patients with STGD1 with the presence/absence of definitely decreased autofluorescence areas were compared. Optical coherence tomography angiography vessel surface area and vessel volume were measured in central zones (Z) of 1-, 2-, and 3-mm diameter. RESULTS: Twenty nine eyes of 15 patients with STGD1 (20/9 eyes with/without definitely decreased autofluorescence) and 30 eyes of 15 controls contributed data. An enlarged foveal avascular zone was found in patients with STGD1 without and even more with definitely decreased autofluorescence associated with a vessel rarefication in central and also paracentral zones with unnoticeable autofluorescence. Vessel surface area and vessel volume were reduced in both STGD1 subgroups for all zones (P < 0.0001). Stargardt disease 1 eyes when compared to without definitely decreased autofluorescence showed reduced vessel surface area and vessel volume in Z2+3 (both P < 0.05). CONCLUSION: Volume rendering of optical coherence tomography angiography in STGD1 shows a reduced retinal flow in the central macula. This is most likely secondary to loss of neurosensory tissue with disease progression and therefore not likely be favorably influenced by gene transfer and retinal pigment epithelial transplantation. Retinal blood flow assessed by 3D volume-rendered optical coherence tomography angiography could serve as surrogate marker for vascular changes of the central retina.


Assuntos
Angiofluoresceinografia/métodos , Macula Lutea/irrigação sanguínea , Vasos Retinianos/fisiopatologia , Doença de Stargardt/fisiopatologia , Tomografia de Coerência Óptica/métodos , Remodelação Vascular/fisiologia , Acuidade Visual , Estudos Transversais , Feminino , Seguimentos , Fundo de Olho , Humanos , Masculino , Vasos Retinianos/diagnóstico por imagem , Doença de Stargardt/diagnóstico
19.
Angew Chem Int Ed Engl ; 60(10): 5561-5568, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33325627

RESUMO

Cellular life requires a high degree of molecular complexity and self-organization, some of which must have originated in a prebiotic context. Here, we demonstrate how both of these features can emerge in a plausibly prebiotic system. We found that chemical gradients in simple mixtures of activated amino acids and fatty acids can lead to the formation of amyloid-like peptide fibrils that are localized inside of a proto-cellular compartment. In this process, the fatty acid or lipid vesicles act both as a filter, allowing the selective passage of activated amino acids, and as a barrier, blocking the diffusion of the amyloidogenic peptides that form spontaneously inside the vesicles. This synergy between two distinct building blocks of life induces a significant increase in molecular complexity and spatial order thereby providing a route for the early molecular evolution that could give rise to a living cell.


Assuntos
Aminoácidos/química , Proteínas Amiloidogênicas/química , Lipossomos/química , Origem da Vida , Peptídeos/química , Aminoácidos/metabolismo , Proteínas Amiloidogênicas/metabolismo , Ácidos Decanoicos/química , Ácidos Decanoicos/metabolismo , Lipossomos/metabolismo , Ácido Oleico/química , Ácido Oleico/metabolismo , Peptídeos/metabolismo , Permeabilidade , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Multimerização Proteica
20.
Nature ; 515(7526): 283-6, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25271403

RESUMO

Mitochondrial ribosomes (mitoribosomes) are extensively modified ribosomes of bacterial descent specialized for the synthesis and insertion of membrane proteins that are critical for energy conversion and ATP production inside mitochondria. Mammalian mitoribosomes, which comprise 39S and 28S subunits, have diverged markedly from the bacterial ribosomes from which they are derived, rendering them unique compared to bacterial, eukaryotic cytosolic and fungal mitochondrial ribosomes. We have previously determined at 4.9 Å resolution the architecture of the porcine (Sus scrofa) 39S subunit, which is highly homologous to the human mitoribosomal large subunit. Here we present the complete atomic structure of the porcine 39S large mitoribosomal subunit determined in the context of a stalled translating mitoribosome at 3.4 Å resolution by cryo-electron microscopy and chemical crosslinking/mass spectrometry. The structure reveals the locations and the detailed folds of 50 mitoribosomal proteins, shows the highly conserved mitoribosomal peptidyl transferase active site in complex with its substrate transfer RNAs, and defines the path of the nascent chain in mammalian mitoribosomes along their idiosyncratic exit tunnel. Furthermore, we present evidence that a mitochondrial tRNA has become an integral component of the central protuberance of the 39S subunit where it architecturally substitutes for the absence of the 5S ribosomal RNA, a ubiquitous component of all cytoplasmic ribosomes.


Assuntos
Mitocôndrias/química , Proteínas Mitocondriais/química , Proteínas Mitocondriais/ultraestrutura , Subunidades Ribossômicas Maiores/química , Subunidades Ribossômicas Maiores/ultraestrutura , Animais , Reagentes de Ligações Cruzadas , Microscopia Crioeletrônica , Espectrometria de Massas , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Conformação Molecular , Peptidil Transferases/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , RNA Ribossômico/ultraestrutura , Subunidades Ribossômicas Maiores/genética , Sus scrofa/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa