Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Radiology ; 307(2): e220989, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36648348

RESUMO

Background The human cerebellum has a large, highly folded cortical sheet. Its visualization is important for various disorders, including multiple sclerosis and spinocerebellar ataxias. The derivation of the cerebellar cortical surface in vivo is impeded by its high foliation. Purpose To image the cerebellar cortex, including its foliations and lamination, in less than 20 minutes, reconstruct the cerebellocortical surface, and extract cortical measures with use of motion-corrected, high-spatial-resolution 7.0-T MRI. Materials and Methods In this prospective study, conducted between February 2021 and July 2022, healthy participants underwent an examination with either a 0.19 × 0.19 × 0.5-mm3, motion-corrected fast low-angle shot (FLASH) sequence (14.5 minutes) or a whole-cerebellum 0.4 × 0.4 × 0.4-mm3, motion-corrected magnetization-prepared 2 rapid gradient-echo (MP2RAGE) sequence (18.5 minutes) at 7.0 T. Four participants underwent an additional FLASH sequence without motion correction. FLASH and MP2RAGE sequences were used to visualize the cerebellar cortical layers, derive cerebellar gray and white matter segmentations, and examine their fidelity. Quantitative measures were compared using repeated-measures analyses of variance or paired t tests. Results Nine participants (median age, 36 years [IQR, 25-42 years; range, 21-62 years]; five women) underwent examination with the FLASH sequence. Nine participants (median age, 37 years [IQR, 34-42 years; range, 25-62 years]; five men) underwent examination with the MP2RAGE sequence. A susceptibility difference between the expected location of the granular and molecular cerebellar layers was visually detected in the FLASH data in all participants. The segmentations derived from the whole-cerebellum MP2RAGE sequence showed the characteristic anatomic features of the cerebellum, like the transverse fissures and splitting folds. The cortical surface area (median, 949 cm2 [IQR, 825-1021 cm2]) was 1.8 times larger, and the cortical thickness (median, 0.88 mm [IQR, 0.81-0.93 mm]) was five times thinner than previous in vivo estimates and closer to ex vivo reference data. Conclusion In vivo imaging of the cerebellar cortical layers and surface and derivation of quantitative measures was feasible in a clinically acceptable acquisition time with use of motion-corrected 7.0-T MRI. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Dietrich in this issue.


Assuntos
Esclerose Múltipla , Substância Branca , Masculino , Humanos , Feminino , Adulto , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Cerebelo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Esclerose Múltipla/diagnóstico por imagem , Encéfalo/anatomia & histologia
2.
Magn Reson Med ; 88(1): 71-82, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35344600

RESUMO

PURPOSE: Single-voxel MRS (SV MRS) requires robust volume localization as well as optimized crusher and phase-cycling schemes to reduce artifacts arising from signal outside the volume of interest. However, due to local magnetic field gradients (B0 inhomogeneities), signal that was dephased by the crusher gradients during acquisition might rephase, leading to artifacts in the spectrum. Here, we analyzed this mechanism, aiming to identify the source of signals arising from unwanted coherence pathways (spurious signals) in SV MRS from a B0 map. METHODS: We investigated all possible coherence pathways associated with imperfect localization in a semi-localized by adiabatic selective refocusing (semi-LASER) sequence for potential rephasing of signals arising from unwanted coherence pathways by a local magnetic field gradient. We searched for locations in the B0 map where the signal dephasing due to external (crusher) and internal (B0 ) field gradients canceled out. To confirm the mechanism, SV-MR spectra (TE = 31 ms) and 3D-CSI data with the same volume localization as the SV experiments were acquired from a phantom and 2 healthy volunteers. RESULTS: Our analysis revealed that potential sources of spurious signals were scattered over multiple locations throughout the brain. This was confirmed by 3D-CSI data. Moreover, we showed that the number of potential locations where spurious signals could originate from monotonically decreases with crusher strength. CONCLUSION: We proposed a method to identify the source of spurious signals in SV 1 H MRS using a B0 map. This can facilitate MRS sequence design to be less sensitive to experimental artifacts.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Campos Magnéticos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
3.
NMR Biomed ; 35(12): e4801, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35833462

RESUMO

In a standard spin echo, the time evolution due to homonuclear couplings is not reversed, leading to echo time (TE)-dependent modulation of the signal amplitude and signal loss in the case of overlapping multiplet resonances. This has an adverse effect on quantification of several important metabolites such as glutamate and glutamine. Here, we propose a J-refocused variant of the sLASER sequence (J-sLASER) to improve quantification of J-coupled metabolites at ultrahigh field (UHF). The use of the sLASER sequence is particularly advantageous at UHF as it minimizes chemical shift displacement error and results in relatively homogenous refocusing. We simulated the MRS signal from brain metabolites over a broad range of TE values with sLASER and J-sLASER, and showed that the signal of J-coupled metabolites was increased with J-sLASER with TE values up to ~80 ms. We further simulated "brain-like" spectra with both sequences at the shortest TE available on our scanner. We showed that, despite the slightly longer TE, the J-sLASER sequence results in significantly lower Cramer-Rao lower bounds (CRLBs) for J-coupled metabolites compared with those obtained with sLASER. Following phantom validation, we acquired spectra from two brain regions in 10 healthy volunteers (age 38 ± 15 years) using both sequences. We showed that using J-sLASER results in a decrease of CRLBs for J-coupled metabolites. In particular, we measured a robust ~38% decrease in the mean CRLB (glutamine) in parietal white matter and posterior cingulate cortex (PCC). We further showed, in 10 additional healthy volunteers (age 34 ± 15 years), that metabolite quantification following two separate acquisitions with J-sLASER in the PCC was repeatable. The improvement in quantification of glutamine may in turn improve the independent quantification of glutamate, the main excitatory neurotransmitter in the brain, and will simultaneously help to track possible modulations of glutamine, which is a key player in the glutamatergic cycle in astrocytes.


Assuntos
Ácido Glutâmico , Glutamina , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Glutamina/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Limite de Detecção , Ácido Glutâmico/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo
4.
NMR Biomed ; 35(10): e4771, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35577344

RESUMO

The increased signal-to-noise ratio (SNR) and chemical shift dispersion at high magnetic fields (≥7 T) have enabled neuro-metabolic imaging at high spatial resolutions. To avoid very long acquisition times with conventional magnetic resonance spectroscopic imaging (MRSI) phase-encoding schemes, solutions such as pulse-acquire or free induction decay (FID) sequences with short repetition time and inner volume selection methods with acceleration (echo-planar spectroscopic imaging [EPSI]), have been proposed. With the inner volume selection methods, limited spatial coverage of the brain and long echo times may still impede clinical implementation. FID-MRSI sequences benefit from a short echo time and have a high SNR per time unit; however, contamination from strong extra-cranial lipid signals remains a problem that can hinder correct metabolite quantification. L2-regularization can be applied to remove lipid signals in cases with high spatial resolution and accurate prior knowledge. In this work, we developed an accelerated two-dimensional (2D) FID-MRSI sequence using an echo-planar readout and investigated the performance of lipid suppression by L2-regularization, an external crusher coil, and the combination of these two methods to compare the resulting spectral quality in three subjects. The reduction factor of lipid suppression using the crusher coil alone varies from 2 to 7 in the lipid region of the brain boundary. For the combination of the two methods, the average lipid area inside the brain was reduced by 2% to 38% compared with that of unsuppressed lipids, depending on the subject's region of interest. 2D FID-EPSI with external lipid crushing and L2-regularization provides high in-plane coverage and is suitable for investigating brain metabolite distributions at high fields.


Assuntos
Imagem Ecoplanar , Prótons , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imagem Ecoplanar/métodos , Humanos , Lipídeos/química , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos
5.
Mov Disord ; 37(3): 479-489, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35114035

RESUMO

BACKGROUND: Parkinson's disease (PD) causes a loss of neuromelanin-positive, noradrenergic neurons in the locus coeruleus (LC), which has been implicated in nonmotor dysfunction. OBJECTIVES: We used "neuromelanin sensitive" magnetic resonance imaging (MRI) to localize structural disintegration in the LC and its association with nonmotor dysfunction in PD. METHODS: A total of 42 patients with PD and 24 age-matched healthy volunteers underwent magnetization transfer weighted (MTw) MRI of the LC. The contrast-to-noise ratio of the MTw signal (CNRMTw ) was used as an index of structural LC integrity. We performed slicewise and voxelwise analyses to map spatial patterns of structural disintegration, complemented by principal component analysis (PCA). We also tested for correlations between regional CNRMTw and severity of nonmotor symptoms. RESULTS: Mean CNRMTw of the right LC was reduced in patients relative to controls. Voxelwise and slicewise analyses showed that the attenuation of CNRMTw was confined to the right mid-caudal LC and linked regional CNRMTw to nonmotor symptoms. CNRMTw attenuation in the left mid-caudal LC was associated with the orthostatic drop in systolic blood pressure, whereas CNRMTw attenuation in the caudal most portion of right LC correlated with apathy ratings. PCA identified a bilateral component that was more weakly expressed in patients. This component was characterized by a gradient in CNRMTw along the rostro-caudal and dorso-ventral axes of the nucleus. The individual expression score of this component reflected the overall severity of nonmotor symptoms. CONCLUSION: A spatially heterogeneous disintegration of LC in PD may determine the individual expression of specific nonmotor symptoms such as orthostatic dysregulation or apathy. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.


Assuntos
Neurônios Adrenérgicos , Doença de Parkinson , Neurônios Adrenérgicos/patologia , Humanos , Locus Cerúleo/metabolismo , Imageamento por Ressonância Magnética/métodos , Movimento , Doença de Parkinson/complicações
6.
NMR Biomed ; 34(5): e4350, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32596978

RESUMO

Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) allow the chemical analysis of physiological processes in vivo and provide powerful tools in the life sciences and for clinical diagnostics. Excellent homogeneity of the static B0 magnetic field over the object of interest is essential for achieving high-quality spectral results and quantitative metabolic measurements. The experimental minimization of B0 variation is performed in a process called B0 shimming. In this article, we summarize the concepts of B0 field shimming using spherical harmonic shimming techniques, specific strategies for B0 homogenization and crucial factors to consider for implementation and use in both brain and body. In addition, experts' recommendations are provided for minimum requirements for B0 shim hardware and evaluation criteria for the primary outcome of adequate B0 shimming for MRS and MRSI, such as the water spectroscopic linewidth.


Assuntos
Consenso , Imageamento por Ressonância Magnética , Animais , Calibragem , Simulação por Computador , Prova Pericial , Humanos , Campos Magnéticos , Processamento de Sinais Assistido por Computador
7.
Magn Reson Med ; 84(3): 1101-1112, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32060951

RESUMO

PURPOSE: To interleave global and local higher order shimming for single voxel MRS. Single voxel MR spectroscopy requires optimization of the B0 field homogeneity in the region of the voxel to obtain a narrow linewidth and provide high data quality. However, the optimization of local higher order fields on a localized MRS voxel typically leads to large field offsets outside that volume. This compromises interleaved MR sequence elements that benefit from global field homogeneity such as water suppression, interleaved MRS-fMRI, and MR motion correction. METHODS: A shimming algorithm was developed to optimize the MRS voxel homogeneity and the whole brain homogeneity for interleaved sequence elements, using static higher order shims and dynamic linear terms (HOS-DLT). Shimming performance was evaluated using 6 brain regions and 10 subjects. Furthermore, the benefits of HOS-DLT was demonstrated for water suppression, MRS-fMRI, and motion corrected MRS using fat-navigators. RESULTS: The HOS-DLT algorithm was shown to improve the whole brain homogeneity compared to an MRS voxel-based shim, without compromising the MRS voxel homogeneity. Improved water suppression over the brain, reduced image distortions in MRS-fMRI, and improved quality of motion navigators were demonstrated using the HOS-DLT method. CONCLUSION: HOS-DLT shimming allowed for both local and global field homogeneity, providing excellent MR spectroscopy data quality, as well as good field homogeneity for interleaved sequence elements, even without the need for dynamic higher order shimming capabilities.


Assuntos
Imageamento por Ressonância Magnética , Água , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Espectroscopia de Ressonância Magnética , Movimento (Física)
8.
Magn Reson Med ; 81(2): 773-780, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30159924

RESUMO

PURPOSE: For rapid spatial mapping of gamma-aminobutyric acid (GABA) at the increased sensitivity and spectral separation for ultra-high magnetic field strength (7 tesla [T]), an accelerated edited magnetic resonance spectroscopic imaging technique was developed and optimized for the human brain at 7 T. METHODS: A MEGA-sLASER sequence was used for GABA editing and volume selection to maximize editing efficiency and minimize chemical shift displacement errors. To accommodate the high bandwidth requirements at 7 T, a single-shot echo planar readout was used for rapid simultaneous encoding of the temporal dimension and 1 spatial. B0 and B1 field aspects specific for 7 T were studied together with correction procedures, and feasibility of the EPSI MEGA-sLASER technique was tested in vivo in 5 healthy subjects. RESULTS: Localized edited spectra could be measured in all subjects giving spatial GABA signal distributions over a central brain region, having 45- to 50-Hz spatial intervoxel B0 field variations and up to 30% B1 field deviations. MEGA editing was found unaffected by the B0 inhomogeneities for the optimized sequence. The correction procedures reduced effects of intervoxel B0 inhomogeneities, corrected for spatial editing efficiency variations, and compensated for GABA resonance phase and frequency shifts from subtle motion and acquisition instabilities. The optimized oscillating echo-planar gradient scheme permitted full spectral acquisition at 7 T and exhibited minimal spectral-spatial ghosting effects for the selected brain region. CONCLUSION: The EPSI MEGA-sLASER technique was shown to provide time-efficient mapping of regional variations in cerebral GABA in a central volume of interest with spatial B1 and B0 field variations typical for 7 T.


Assuntos
Imagem Ecoplanar , Espectroscopia de Ressonância Magnética , Ácido gama-Aminobutírico/química , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Lasers , Campos Magnéticos , Masculino , Pessoa de Meia-Idade , Movimento (Física) , Oscilometria , Imagens de Fantasmas , Reprodutibilidade dos Testes , Software
9.
Magn Reson Med ; 77(1): 16-22, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27851878

RESUMO

PURPOSE: To develop J-difference editing with parallel reconstruction in accelerated multivoxel (PRIAM) for simultaneous measurement in two separate brain regions of γ-aminobutyric acid (GABA) or glutathione. METHODS: PRIAM separates signals from two simultaneously excited voxels using receiver-coil sensitivity profiles. PRIAM was implemented into Mescher-Garwood (MEGA) edited experiments at 3 Tesla (T), and validated by acquiring dual-voxel MEGA-PRIAM (and compared with conventional single-voxel MEGA-PRESS) spectra from a GABA/glutathione phantom, and 11 healthy participants. RESULTS: MEGA-PRIAM effectively separated phantom spectra with ∼3-4% between-voxel contamination. GABA and glutathione measurements agreed well with those obtained using single-voxel MEGA-PRESS (mean difference was below 2% in GABA levels, and below 7% in glutathione levels). In vivo, GABA- and glutathione-edited spectra were successfully reconstructed with a mean in vivo g-factor of 1.025 (typical voxel-center separation: 7-8 cm). MEGA-PRIAM experiments showed higher signal-to-noise ratio than sequential single-voxel experiments of the same total duration (mean improvement 1.38 ± 0.24). CONCLUSIONS: Simultaneous acquisition of J-difference-edited GABA or glutathione spectra from two voxels is feasible at 3 T. MEGA-PRIAM increases data acquisition rates compared with MEGA-PRESS by a factor of 2. Magn Reson Med, 2016. © 2016 International Society for Magnetic Resonance in Medicine.

10.
Magn Reson Med ; 78(4): 1373-1382, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27859614

RESUMO

PURPOSE: To compare methods for estimating B0 maps used in retrospective correction of high-resolution anatomical images at ultra-high field strength. The B0 maps were obtained using three methods: (1) 1D navigators and coil sensitivities, (2) field probe (FP) data and a low-order spherical harmonics model, and (3) FP data and a training-based model. METHODS: Data from nine subjects were acquired while they performed activities inducing B0 field fluctuations. Estimated B0 fields were compared with reference data, and the reductions of artifacts were compared in corrected T2* images. RESULTS: Reduction of sum-of-squares difference relative to a reference image was evaluated, and Method 1 yielded the largest artifact reduction: 27 ± 15%, 20 ± 18% (mean ± 1 standard deviation) for deep breathing and combined deep breathing and hand motion activities. Method 3 performed almost as well (24 ± 18%, 15 ± 17%), provided that adequate training data were used, and Method 2 gave a similar result (21 ± 16%, 19 ± 17%). CONCLUSION: This study confirms that all of the investigated methods can be used in retrospective image correction. In terms of image quality, Method 1 had a small advantage, whereas the FP-based methods measured the B0 field slightly more accurately. The specific strengths and weaknesses of FPs and navigators should therefore be considered when determining which B0 -estimation method to use. Magn Reson Med 78:1373-1382, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Artefatos , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Adulto Jovem
11.
NMR Biomed ; 30(2)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28032377

RESUMO

In vivo water- and fat-suppressed 1 H magnetic resonance spectroscopy (MRS) and 31 P magnetic resonance adiabatic multi-echo spectroscopic imaging were performed at 7 T in duplicate in healthy fibroglandular breast tissue of a group of eight volunteers. The transverse relaxation times of 31 P metabolites were determined, and the reproducibility of 1 H and 31 P MRS was investigated. The transverse relaxation times for phosphoethanolamine (PE) and phosphocholine (PC) were fitted bi-exponentially, with an added short T2 component of 20 ms for adenosine monophosphate, resulting in values of 199 ± 8 and 239 ± 14 ms, respectively. The transverse relaxation time for glycerophosphocholine (GPC) was also fitted bi-exponentially, with an added short T2 component of 20 ms for glycerophosphatidylethanolamine, which resonates at a similar frequency, resulting in a value of 177 ± 6 ms. Transverse relaxation times for inorganic phosphate, γ-ATP and glycerophosphatidylcholine mobile phospholipid were fitted mono-exponentially, resulting in values of 180 ± 4, 19 ± 3 and 20 ± 4 ms, respectively. Coefficients of variation for the duplicate determinations of 1 H total choline (tChol) and the 31 P metabolites were calculated for the group of volunteers. The reproducibility of inorganic phosphate, the sum of phosphomonoesters and the sum of phosphodiesters with 31 P MRS imaging was superior to the reproducibility of 1 H MRS for tChol. 1 H and 31 P data were combined to calculate estimates of the absolute concentrations of PC, GPC and PE in healthy fibroglandular tissue, resulting in upper limits of 0.1, 0.1 and 0.2 mmol/kg of tissue, respectively.


Assuntos
Mama/metabolismo , Compostos de Fósforo/metabolismo , Fósforo/farmacocinética , Espectroscopia de Prótons por Ressonância Magnética/métodos , Adulto , Mama/anatomia & histologia , Feminino , Humanos , Taxa de Depuração Metabólica , Compostos Radiofarmacêuticos/farmacocinética , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Distribuição Tecidual
12.
NMR Biomed ; 30(11)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28915314

RESUMO

Proton magnetic resonance spectroscopy (1 H-MRS) can be used to quantify in vivo metabolite levels, such as lactate, γ-aminobutyric acid (GABA) and glutamate (Glu). However, there are considerable analysis choices which can alter the accuracy or precision of 1 H-MRS metabolite quantification. It is currently unknown to what extent variations in the analysis pipeline used to quantify 1 H-MRS data affect outcomes. The purpose of this study was to evaluate whether the quantification of identical 1 H-MRS scans across independent and experienced research groups would yield comparable results. We investigated the influence of model parameters and spectral quantification software on fitted metabolite concentration values. Sixty spectra in 30 individuals (repeated measures) were acquired using a 7-T MRI scanner. Data were processed by four independent research groups with the freedom to choose their own individualized and optimal parameter settings using LCModel software. Data were processed a second time in one group using an independent software package (NMRWizard) for an additional comparison with a different post-processing platform. Correlations across research groups of the ratio between the highest and, arguably, the most relevant resonances for neurotransmission [N-acetyl aspartate (NAA), N-acetyl aspartyl glutamate (NAAG) and Glu] over the total creatine [creatine (Cr) + phosphocreatine (PCr)] concentration, using Pearson's product-moment correlation coefficient (r), were calculated. Mean inter-group correlations using LCModel software were 0.87, 0.88 and 0.77 for NAA/Cr + PCr, NAA + NAAG/Cr + PCr and Glu/Cr + PCr, respectively. The mean correlations when comparing NMRWizard results with LCModel fitting results at University Medical Center Utrecht (UMCU) were 0.87, 0.89 and 0.71 for NAA/Cr + PCr, NAA + NAAG/Cr + PCr and Glu/Cr + PCr, respectively. Metabolite quantification using identical 1 H-MRS data was influenced by processing parameters, basis sets and software choice. Locally preferred processing choices affected metabolite quantification, even when using identical software. Our results reinforce the notion that standard practices should be established to regularize outcomes of 1 H-MRS studies, and that basis sets used for processing should be made available to the scientific community.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Ácido Aspártico/análogos & derivados , Ácido Aspártico/análise , Creatina/análise , Ácido Glutâmico/análise , Humanos , Fosfocreatina/análise
13.
NMR Biomed ; 29(9): 1222-30, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26601921

RESUMO

The purpose of this article was to compare the sensitivity of proton observed phosphorus editing (POPE) with direct (31) P MRS with Ernst angle excitation for (1) H-(31) P coupled metabolites at 7 T. POPE sequences were developed for detecting phosphocholine (PC), phosphoethanolamine (PE), glycerophosphocholine (GPC), and glycerophosphoethanolamine (GPE) on the (1) H channel, thereby using the enhanced sensitivity of the (1) H nuclei over (31) P detection. Five healthy volunteers were examined with POPE and (31) P-MRS. POPE editing showed a more than doubled sensitivity in an ideal phantom experiment as compared with direct (31) P MRS with Ernst angle excitation. In vivo, despite increased relaxation losses, significant gains in signal-to-noise ratio (SNR) of 30-40% were shown for PE and GPE + PC levels in the human brain. The SNR of GPC was lower in the POPE measurement compared with the (31) P-MRS measurement. Furthermore, selective narrowband editing on the (31) P channel showed the ability to separate the overlapping GPE and PE signals in the (1) H spectrum. POPE can be used for enhanced detection of (1) H-(31) P coupled metabolites in vivo. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Algoritmos , Encéfalo/metabolismo , Imagem Molecular/métodos , Fosfolipídeos/metabolismo , Isótopos de Fósforo/farmacocinética , Espectroscopia de Prótons por Ressonância Magnética/métodos , Encéfalo/anatomia & histologia , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/instrumentação , Imagens de Fantasmas , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual
14.
J Magn Reson Imaging ; 44(6): 1474-1482, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27239903

RESUMO

PURPOSE: To investigate the effects of B0 field offsets and drift on macromolecule (MM)-suppressed GABA-editing experiments, and to implement and test a prospective correction scheme. "Symmetric" editing schemes are proposed to suppress unwanted coedited MM signals in GABA editing. MATERIALS AND METHODS: Full density-matrix simulations of both conventional (nonsymmetric) and symmetric MM-suppressed editing schemes were performed for the GABA spin system to evaluate their offset-dependence. Phantom and in vivo (15 subjects at 3T) GABA-edited experiments with symmetrical suppression of MM signals were performed to quantify the effects of field offsets on the total GABA+MM signal (designated GABA+). A prospective frequency correction method based on interleaved water referencing (IWR) acquisitions was implemented and its experimental performance evaluated during positive and negative drift. RESULTS: Simulations show that the signal from MM-suppressed symmetrical editing schemes is an order of magnitude more susceptible to field offsets than the signal from nonsymmetric editing schemes. The MM-suppressed GABA signal changes by 8.6% per Hz for small field offsets. IWR significantly reduces variance in the field offset and measured GABA levels (both P < 0.001 by F-tests), maintaining symmetric suppression of MM signal. CONCLUSION: Symmetrical editing schemes substantially increase the dependence of measurements on B0 field offsets, which can arise due to patient movement and/or scanner instability. It is recommended that symmetrical editing should be used in combination with effective B0 stabilization, such as that provided by IWR. J. Magn. Reson. Imaging 2016;44:1474-1482.


Assuntos
Artefatos , Encéfalo/metabolismo , Substâncias Macromoleculares/metabolismo , Imagem Molecular/métodos , Espectroscopia de Prótons por Ressonância Magnética , Processamento de Sinais Assistido por Computador , Ácido gama-Aminobutírico/metabolismo , Adulto , Algoritmos , Encéfalo/anatomia & histologia , Feminino , Humanos , Imageamento por Ressonância Magnética/instrumentação , Masculino , Imagens de Fantasmas
15.
Magn Reson Med ; 74(2): 482-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25160960

RESUMO

PURPOSE: Going to ultrahigh field MRI (e.g., 7 Tesla [T]), the nonuniformity of the B1+ field and the increased radiofrequency (RF) power deposition become challenging. While surface coils improve the power efficiency in B1+, its field remains nonuniform. In this work, an RF pulse was designed that uses the slab selection to compensate the inhomogeneous B1+ field of a surface coil without a substantial increase in specific absorption rate (SAR). THEORY AND METHODS: A breast surface coil was used with a decaying B1+ field in the anterior-posterior direction of the human breast. Slab selective RF pulses were designed and compared with adiabatic and spokes RF pulses. Proof of principle was demonstrated with FFE and B1+ maps of the human breast. RESULTS: In vivo measurements obtained with the breast surface coil show that the tilt optimized flip uniformity (TOFU) RF pulses can improve the flip angle homogeneity by 31%, while the SAR will be lower compared with BIR-4 and spokes RF pulses. CONCLUSION: By applying TOFU RF pulses to the breast surface coil, we are able to compensate the inhomogeneous B1+ field, while keeping the SAR low. Therefore stronger T1 -weighting in FFE sequences can be obtained, while pulse durations can remain short, as shown in the human breast at 7T.


Assuntos
Artefatos , Neoplasias da Mama/patologia , Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Absorção de Radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Masculino , Doses de Radiação , Proteção Radiológica/instrumentação , Proteção Radiológica/métodos , Transdutores
16.
Magn Reson Med ; 73(6): 2062-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24947343

RESUMO

PURPOSE: Lipid suppression in MR brain imaging and spectroscopy has been a long-standing problem for which various techniques have been developed. Most methods are based on inversion recovery or spatially or spectrally selective excitation of the lipid signal followed by dephasing. All techniques require additional RF pulses, gradient crushers and delays, which increase the duration and complexity of sequences. In addition, the lipid signal is poorly shimmed, and is composed of different resonance frequencies that have different relaxation properties. METHODS: In this work, a novel approach for suppression of extra cranial lipids is presented, by means of an outer volume crusher coil. It is based on the principle of surface spoiling gradients, which generate a very local and inhomogeneous magnetic field in the outer layer of the head, and thereby destroys the phase coherence of the extra cranial signals. RESULTS: Dephasing of the signal can be incorporated in almost any sequence because it requires only a short pulse of the coil, and does not require additional RF pulses or delays. Examples of lipid suppression are shown in both gradient echo imaging and spectroscopic imaging. CONCLUSION: Outer volume crushing allows for simple fat suppression and boosts scanning efficiency, which is particularly beneficial at ultra-high field strengths.


Assuntos
Tecido Adiposo/metabolismo , Aumento da Imagem/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/instrumentação , Química Encefálica , Mapeamento Encefálico , Desenho de Equipamento , Voluntários Saudáveis , Humanos
17.
Magn Reson Med ; 74(6): 1803-10, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25521345

RESUMO

PURPOSE: High-resolution MRI combined with phospholipid detection may improve breast cancer grading. Currently, configurations are optimized for either high-resolution imaging or (31) P spectroscopy. To be able to perform both imaging as well as spectroscopy in a single session, we integrated a (1) H receiver array into a (1) H-(31) P transceiver at 7T. To ensure negligible signal loss due to coupling between elements, we investigated the use of a floating decoupling loop to enable bilateral MRI and (31) P MRS. METHODS: Two quadrature double-tuned radiofrequency coils were designed for bilateral breast MR with active detuning at the (1) H frequency. The two coils were placed adjacent to each other and decoupled for both frequencies with a single resonant floating loop. Sensitivity of the bilateral configuration, facilitating space for a 26-element (1) H receive array, was compared with a transceiver configuration. RESULTS: The floating loop was able to decouple the elements over 20 dB for both frequencies. Enlargement of the elements, to provide space for the receivers, and the addition of detuning electronics altered the (31) P sensitivity by 0.4 dB. CONCLUSION: Dynamic contrast-enhanced scans of 0.7 mm isotropic, diffusion-weighted imaging, and (31) P MR spectroscopic imaging can be acquired at 7T in a single session as demonstrated in a patient with invasive ductal carcinoma.


Assuntos
Neoplasias da Mama/diagnóstico , Carcinoma Ductal de Mama/diagnóstico , Imagem de Difusão por Ressonância Magnética/instrumentação , Aumento da Imagem/instrumentação , Espectroscopia de Ressonância Magnética/instrumentação , Magnetismo/instrumentação , Amplificadores Eletrônicos , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Imagem Molecular/métodos , Isótopos de Fósforo/farmacocinética , Ondas de Rádio , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Transdutores
18.
NMR Biomed ; 28(11): 1433-42, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26373355

RESUMO

Capecitabine (Cap) is an often prescribed chemotherapeutic agent, successfully used to cure some patients from cancer or reduce tumor burden for palliative care. However, the efficacy of the drug is limited, it is not known in advance who will respond to the drug and it can come with severe toxicity. (19)F Magnetic Resonance Spectroscopy (MRS) and Magnetic Resonance Spectroscopic Imaging (MRSI) have been used to non-invasively study Cap metabolism in vivo to find a marker for personalized treatment. In vivo detection, however, is hampered by low concentrations and the use of radiofrequency (RF) surface coils limiting spatial coverage. In this work, the use of a 7T MR system with radiative multi-channel transmit-receive antennas was investigated with the aim of maximizing the sensitivity and spatial coverage of (19)F detection protocols. The antennas were broadband optimized to facilitate both the (1)H (298 MHz) and (19)F (280 MHz) frequencies for accurate shimming, imaging and signal combination. B1(+) simulations, phantom and noise measurements showed that more than 90% of the theoretical maximum sensitivity could be obtained when using B1(+) and B1(-) information provided at the (1)H frequency for the optimization of B1(+) and B1(-) at the (19)F frequency. Furthermore, to overcome the limits in maximum available RF power, whilst ensuring simultaneous excitation of all detectable conversion products of Cap, a dual-band RF pulse was designed and evaluated. Finally, (19)F MRS(I) measurements were performed to detect (19)F metabolites in vitro and in vivo. In two patients, at 10 h (patient 1) and 1 h (patient 2) after Cap intake, (19)F metabolites were detected in the liver and the surrounding organs, illustrating the potential of the set-up for in vivo detection of metabolic rates and drug distribution in the body.


Assuntos
Capecitabina/metabolismo , Imagem por Ressonância Magnética de Flúor-19/métodos , Fígado/metabolismo , Espectroscopia de Ressonância Magnética/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Transdutores , Antimetabólitos Antineoplásicos/metabolismo , Desenho de Equipamento , Análise de Falha de Equipamento , Flúor/farmacocinética , Humanos , Imagens de Fantasmas , Ondas de Rádio , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual
19.
Magn Reson Med ; 71(2): 451-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23468435

RESUMO

PURPOSE: Intramolecular zero-quantum-coherences (ZQCs) are intrinsically insensitive toward magnetic field inhomogeneity. This fact is used to quantify and characterize lipid signals in the human breast at 7 T despite the presence of severe magnetic field inhomogeneity caused by water-lipid susceptibility boundaries. METHODS: A novel 3D localized 2D ZQC method is presented. The combination of cardiac/respiratory triggering and post-acquisition navigator echo correction provides high-quality 2D NMR spectra in vivo. RESULTS: The lipid profile of the human breast could be quantified by 2D ZQC NMR in 100% of the subjects despite a wide range of magnetic field homogeneity. With conventional 1D (1)H MRS, the magnetic field homogeneity was only adequate in 60% of the subjects. The results from 2D ZQC NMR and 1D NMR are in good correspondence, both in vitro and in vivo. CONCLUSION: It has been demonstrated that high quality and quantitative 2D ZQC NMR spectra can be acquired from human breast tissue at 7 T. While the simplicity and sensitivity of 1D MRS are preferable when the magnetic field homogeneity is adequate, the 2D ZQC method provides a viable alternative in cases where this requirement cannot be met.


Assuntos
Mama/química , Lipídeos/análise , Espectroscopia de Ressonância Magnética/métodos , Adulto , Feminino , Humanos
20.
NMR Biomed ; 27(6): 625-31, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24615920

RESUMO

The increased magnetic susceptibility effects at higher magnetic fields increase the demands for shimming of the B0 field for in vivo MRI and MRS. Both static and dynamic techniques have been developed to compensate for susceptibility-induced field inhomogeneities. In this study, we investigate the impact of and need for both static and dynamic higher order B0 shimming of magnetic field homogeneities in clinical breast MRI at 7 T. Both global and local field variations at lipid-tissue interfaces were observed in the magnetic field using TE-optimized B0 mapping at 7 T. With static B0 shimming, a field homogeneity of 39 ± 11 Hz (n = 48) was reached in a single breast using second-order shimming. Further compensation of the residual local field inhomogeneities caused by lipid-tissue interfaces does not seem to be feasible with shallow spherical harmonic fields. For bilateral shimming, the shimming quality was significantly less at 62 ± 15 Hz (n = 22) over both breasts, even after (simulated) fourth-order shimming. In addition, a substantial time-dependent field instability of 30 Hz peak to peak, with significant higher order field contributions, was observed during regular breathing. In conclusion, TE-optimized B0 field mapping reveals substantial field variations in the lipid-rich environment of the human breast, in both space and time. The static field variations could be partially minimized by third-order B0 shimming, providing sufficient lipid suppression. However, in order to fully benefit from the increased spectral dispersion at high fields, the significant magnetic field variations during breathing need to be considered.


Assuntos
Mama/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Feminino , Humanos , Respiração
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa