Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Angew Chem Int Ed Engl ; : e202410435, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39329252

RESUMO

Current methods for proteomimetic engineering rely on structure-based design. Here we describe a design strategy that allows the construction of proteomimetics against challenging targets without a priori characterization of the target surface. Our approach relies on (i) a 100-membered photoreactive foldamer library, the members of which act as local surface mimetics, and (ii) the subsequent affinity maturation of the primary hits using systems chemistry. Two surface-oriented proteinogenic side chains drove the interactions between the short helical foldamer fragments and the proteins. Diazirine-based photo-crosslinking was applied to sensitively detected and localize binding even to shallow and dynamic patches on representatively difficult targets. Photo-foldamers identified functionally relevant protein interfaces, allosteric and previously unexplored targetable regions on the surface of STAT3 and an oncogenic K-Ras variant. Target-templated dynamic linking of foldamer hits resulted in two orders of magnitude affinity improvement in a single step. The dimeric K-Ras ligand mimicked protein-like catalytic functions. The photo-foldamer approach thus enables the highly efficient mapping of protein-protein interaction sites and provides a viable starting point for proteomimetic ligand development without a priori structural hypotheses.

2.
PLoS Biol ; 18(10): e3000819, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33017402

RESUMO

Antibiotics that inhibit multiple bacterial targets offer a promising therapeutic strategy against resistance evolution, but developing such antibiotics is challenging. Here we demonstrate that a rational design of balanced multitargeting antibiotics is feasible by using a medicinal chemistry workflow. The resultant lead compounds, ULD1 and ULD2, belonging to a novel chemical class, almost equipotently inhibit bacterial DNA gyrase and topoisomerase IV complexes and interact with multiple evolutionary conserved amino acids in the ATP-binding pockets of their target proteins. ULD1 and ULD2 are excellently potent against a broad range of gram-positive bacteria. Notably, the efficacy of these compounds was tested against a broad panel of multidrug-resistant Staphylococcus aureus clinical strains. Antibiotics with clinical relevance against staphylococcal infections fail to inhibit a significant fraction of these isolates, whereas both ULD1 and ULD2 inhibit all of them (minimum inhibitory concentration [MIC] ≤1 µg/mL). Resistance mutations against these compounds are rare, have limited impact on compound susceptibility, and substantially reduce bacterial growth. Based on their efficacy and lack of toxicity demonstrated in murine infection models, these compounds could translate into new therapies against multidrug-resistant bacterial infections.


Assuntos
Antibacterianos/farmacologia , Desenho de Fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Antibacterianos/uso terapêutico , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Evolução Molecular Direcionada , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Testes de Sensibilidade Microbiana , Mutação/genética , Pele/efeitos dos fármacos , Pele/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Testes de Toxicidade
3.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36982456

RESUMO

Alzheimer's disease (AD) is an incurable, progressive neurodegenerative disorder. AD is a complex and multifactorial disease that is responsible for 60-80% of dementia cases. Aging, genetic factors, and epigenetic changes are the main risk factors for AD. Two aggregation-prone proteins play a decisive role in AD pathogenesis: ß-amyloid (Aß) and hyperphosphorylated tau (pTau). Both of them form deposits and diffusible toxic aggregates in the brain. These proteins are the biomarkers of AD. Different hypotheses have tried to explain AD pathogenesis and served as platforms for AD drug research. Experiments demonstrated that both Aß and pTau might start neurodegenerative processes and are necessary for cognitive decline. The two pathologies act in synergy. Inhibition of the formation of toxic Aß and pTau aggregates has been an old drug target. Recently, successful Aß clearance by monoclonal antibodies has raised new hopes for AD treatments if the disease is detected at early stages. More recently, novel targets, e.g., improvements in amyloid clearance from the brain, application of small heat shock proteins (Hsps), modulation of chronic neuroinflammation by different receptor ligands, modulation of microglial phagocytosis, and increase in myelination have been revealed in AD research.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/patologia , Encéfalo/metabolismo , Amiloide/metabolismo , Proteínas tau/metabolismo
4.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34948048

RESUMO

Due to its tensile strength and excellent biocompatibility, titanium (Ti) is commonly used as an implant material in medicine and dentistry. The success of dental implants depends on the formation of a contact between the oxidized surface of Ti implant and the surrounding bone tissue. The adsorption of proteins and peptides to the implant surface allows the bone-forming osteoblast cells to adhere to such modified surfaces. Recently, it has been observed that tetrapeptide KRSR (Lys-Arg-Ser-Arg) functionalization could promote osteoblast adhesion to implant surfaces. This may facilitate the establishment of an efficient bone-to implant contact and improve implant stability during the healing process. GROMACS, a molecular dynamics software package was used to perform a 200 ns simulation of adsorption of the KRSR peptide to the TiO2 (anatase) surface in an aqueous environment. The molecule conformations were mapped with Replica Exchange Molecular Dynamics (REMD) simulations to assess the possible peptide conformations on the anatase surface, and the umbrella sampling method was used to calculate the binding energy of the most common conformation. The simulations have shown that the KRSR peptide migrates and attaches to the surface in a stable position. The dominant amino acid residue interacting with the TiO2 surface was the N-terminal charged lysine (K) residue. REMD indicated that there is a distinct conformation that is taken by the KRSR peptide. In this conformation the surface interacts only with the lysine residue while the ser (S) and arg (R) residues interact with water molecules farther from the surface. The binding free energy of the most common conformation of KRSR peptide to the anatase (100) surface was ΔG = -8.817 kcal/mol. Our result suggests that the N-terminal lysine residue plays an important role in the adhesion of KRSR to the TiO2 surface and may influence the osseointegration of dental implants.


Assuntos
Oligopeptídeos/química , Titânio/química , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular
5.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360878

RESUMO

Sigma-1 receptor (S1R) is an intracellular, multi-functional, ligand operated protein that also acts as a chaperone. It is considered as a pluripotent drug target in several pathologies. The publication of agonist and antagonist bound receptor structures has paved the way for receptor-based in silico drug design. However, recent studies on this subject payed no attention to the structural differences of agonist and antagonist binding. In this work, we have developed a new ensemble docking-based virtual screening protocol utilizing both agonist and antagonist bound S1R structures. This protocol was used to screen our in-house compound library. The S1R binding affinities of the 40 highest ranked compounds were measured in competitive radioligand binding assays and the sigma-2 receptor (S2R) affinities of the best S1R binders were also determined. This way three novel high affinity S1R ligands were identified and one of them exhibited a notable S1R/S2R selectivity.


Assuntos
Isoxazóis/química , Simulação de Acoplamento Molecular/métodos , Pentazocina/química , Piridinas/química , Receptores sigma/química , Sítios de Ligação , Interações Hidrofóbicas e Hidrofílicas , Isoxazóis/análise , Isoxazóis/farmacologia , Ligantes , Estrutura Molecular , Pentazocina/análise , Pentazocina/farmacologia , Ligação Proteica , Piridinas/análise , Piridinas/farmacologia , Ensaio Radioligante/métodos , Receptores sigma/agonistas , Receptores sigma/análise , Receptores sigma/antagonistas & inibidores , Receptor Sigma-1
6.
Molecules ; 25(7)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260279

RESUMO

The structural polymorphism and the physiological and pathophysiological roles of two important proteins, ß-amyloid (Aß) and tau, that play a key role in Alzheimer's disease (AD) are reviewed. Recent results demonstrate that monomeric Aß has important physiological functions. Toxic oligomeric Aß assemblies (AßOs) may play a decisive role in AD pathogenesis. The polymorph fibrillar Aß (fAß) form has a very ordered cross-ß structure and is assumed to be non-toxic. Tau monomers also have several important physiological actions; however, their oligomerization leads to toxic oligomers (TauOs). Further polymerization results in probably non-toxic fibrillar structures, among others neurofibrillary tangles (NFTs). Their structure was determined by cryo-electron microscopy at atomic level. Both AßOs and TauOs may initiate neurodegenerative processes, and their interactions and crosstalk determine the pathophysiological changes in AD. TauOs (perhaps also AßO) have prionoid character, and they may be responsible for cell-to-cell spreading of the disease. Both extra- and intracellular AßOs and TauOs (and not the previously hypothesized amyloid plaques and NFTs) may represent the novel targets of AD drug research.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Proteínas tau/química , Peptídeos beta-Amiloides/metabolismo , Animais , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas tau/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-31235632

RESUMO

Multitargeting antibiotics, i.e., single compounds capable of inhibiting two or more bacterial targets, are generally considered to be a promising therapeutic strategy against resistance evolution. The rationale for this theory is that multitargeting antibiotics demand the simultaneous acquisition of multiple mutations at their respective target genes to achieve significant resistance. The theory presumes that individual mutations provide little or no benefit to the bacterial host. Here, we propose that such individual stepping-stone mutations can be prevalent in clinical bacterial isolates, as they provide significant resistance to other antimicrobial agents. To test this possibility, we focused on gepotidacin, an antibiotic candidate that selectively inhibits both bacterial DNA gyrase and topoisomerase IV. In a susceptible organism, Klebsiella pneumoniae, a combination of two specific mutations in these target proteins provide an >2,000-fold reduction in susceptibility, while individually, none of these mutations affect resistance significantly. Alarmingly, strains with decreased susceptibility against gepotidacin are found to be as virulent as the wild-type Klebsiella pneumoniae strain in a murine model. Moreover, numerous pathogenic isolates carry mutations which could promote the evolution of clinically significant reduction of susceptibility against gepotidacin in the future. As might be expected, prolonged exposure to ciprofloxacin, a clinically widely employed gyrase inhibitor, coselected for reduced susceptibility against gepotidacin. We conclude that extensive antibiotic usage could select for mutations that serve as stepping-stones toward resistance against antimicrobial compounds still under development. Our research indicates that even balanced multitargeting antibiotics are prone to resistance evolution.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Klebsiella pneumoniae/efeitos dos fármacos , Mutação , Acenaftenos/química , Acenaftenos/farmacologia , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciprofloxacina/farmacologia , DNA Girase/química , DNA Girase/genética , DNA Girase/metabolismo , Evolução Molecular Direcionada , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Fluoroquinolonas/farmacologia , Aptidão Genética , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/farmacologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidade , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Virulência/genética
8.
Int J Mol Sci ; 19(1)2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29361800

RESUMO

Neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease and Huntington's disease (HD), amyotrophic lateral sclerosis, and prion diseases are all characterized by the accumulation of protein aggregates (amyloids) into inclusions and/or plaques. The ubiquitous presence of amyloids in NDDs suggests the involvement of disturbed protein homeostasis (proteostasis) in the underlying pathomechanisms. This review summarizes specific mechanisms that maintain proteostasis, including molecular chaperons, the ubiquitin-proteasome system (UPS), endoplasmic reticulum associated degradation (ERAD), and different autophagic pathways (chaperon mediated-, micro-, and macro-autophagy). The role of heat shock proteins (Hsps) in cellular quality control and degradation of pathogenic proteins is reviewed. Finally, putative therapeutic strategies for efficient removal of cytotoxic proteins from neurons and design of new therapeutic targets against the progression of NDDs are discussed.


Assuntos
Autofagia/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Neuroproteção/genética , Transdução de Sinais , Animais , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Endossomos/metabolismo , Humanos , Lisossomos/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/prevenção & controle , Doenças Neurodegenerativas/terapia , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina/metabolismo , Resposta a Proteínas não Dobradas
9.
Molecules ; 22(10)2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28994715

RESUMO

Protein dyshomeostasis is the common mechanism of neurodegenerative diseases such as Alzheimer's disease (AD). Aging is the key risk factor, as the capacity of the proteostasis network declines during aging. Different cellular stress conditions result in the up-regulation of the neurotrophic, neuroprotective amyloid precursor protein (APP). Enzymatic processing of APP may result in formation of toxic Aß aggregates (ß-amyloids). Protein folding is the basis of life and death. Intracellular Aß affects the function of subcellular organelles by disturbing the endoplasmic reticulum-mitochondria cross-talk and causing severe Ca2+-dysregulation and lipid dyshomeostasis. The extensive and complex network of proteostasis declines during aging and is not able to maintain the balance between production and disposal of proteins. The effectivity of cellular pathways that safeguard cells against proteotoxic stress (molecular chaperones, aggresomes, the ubiquitin-proteasome system, autophagy) declines with age. Chronic cerebral hypoperfusion causes dysfunction of the blood-brain barrier (BBB), and thus the Aß-clearance from brain-to-blood decreases. Microglia-mediated clearance of Aß also declines, Aß accumulates in the brain and causes neuroinflammation. Recognition of the above mentioned complex pathogenesis pathway resulted in novel drug targets in AD research.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Barreira Hematoencefálica/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Mitocôndrias/metabolismo , Agregação Patológica de Proteínas/metabolismo , Transdução de Sinais , Regulação para Cima
10.
Biopolymers ; 106(5): 645-57, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27161099

RESUMO

We studied the folding processes of long-sequence hypomurocin (HM) peptides and their analogs by means of molecular dynamics methods, focusing on the formation of various helical structures and intramolecular H-bonds. The evolution of different helical conformations, such as the 310 -, α-, and left-handed α-helices, was examined, taking into account the entire sequence and each amino acid of peptides. The results indicated that the HM peptides and their analogs possessed a propensity to adopt helical conformations, and they showed a preference for the 310 -helical structure over the α-helical one. The evolution of a variety of the intramolecular H-bonds, including local and non-local interactions, was also investigated. The results pointed out that on the one hand, the appearance of local, helix-stabilizing H-bonds correlated with the presence of helical conformations, and on the other hand, the non-local H-bonds did not affect significantly the formation of helical structures. Additionally, comparing the structural and folding features of HM peptides and their analogs, our study led to the observation that the L-D isomerism of isovaline amino acid induced effects on the folding processes of these long-sequence peptaibol molecules. Accordingly, the HM peptides and their analogs could be characterized by typical structural and folding properties. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 645-657, 2016.


Assuntos
Peptídeos/química , Perileno/análogos & derivados , Dobramento de Proteína , Quinonas/química , Ligação de Hidrogênio , Perileno/química , Estrutura Secundária de Proteína
11.
J Comput Aided Mol Des ; 29(12): 1137-49, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26572911

RESUMO

In order to identify molecular models of the human 5-HT6 receptor suitable for virtual screening, homology modeling and membrane-embedded molecular dynamics simulations were performed. Structural requirements for robust enrichment were assessed by an unbiased chemometric analysis of enrichments from retrospective virtual screening studies. The two main structural features affecting enrichment are the outward movement of the second extracellular loop and the formation of a hydrophobic cavity deep in the binding site. These features appear transiently in the trajectories and furthermore the stretches of uniformly high enrichment may only last 4-10 ps. The formation of the inner hydrophobic cavity was also linked to the active-like to inactive-like transition of the receptor, especially the so-called connector region. The best structural models provided significant and robust enrichment over three independent ligand sets.


Assuntos
Desenho de Fármacos , Receptores de Serotonina/metabolismo , Sítios de Ligação , Desenho Assistido por Computador , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Receptores de Serotonina/química
12.
J Chem Inf Model ; 53(11): 2990-9, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-24116387

RESUMO

The formation of ligand-protein complexes requires simultaneous adaptation of the binding partners. In structure based virtual screening, high throughput docking approaches typically consider the ligand flexibility, but the conformational freedom of the protein is usually taken into account in a limited way. The goal of this study is to elaborate a methodology for incorporating protein flexibility to improve the virtual screening enrichments on GPCRs. Explicit-solvated molecular dynamics simulations (MD) were carried out in lipid bilayers to generate an ensemble of protein conformations for the X-ray structures and homology models of both aminergic and peptidergic GPCRs including the chemokine CXCR4, dopamine D3, histamine H4, and serotonin 5HT6 holo receptor complexes. The quality of the receptor models was assessed by enrichment studies to compare X-ray structures, homology models, and snapshots from the MD trajectory. According to our results, selected frames from the MD trajectory can outperform X-ray structures and homology models in terms of enrichment factor and AUC values. Significant changes were observed considering EF1% values: comparing the original CXCR4, D3, and H4 targets and the additional 5HT6 initial models to that of the best MD frame resulted in 0 to 6.7, 0.32 to 3.5 (10×), 13.3 to 26.7 (2×), and 0 to 14.1 improvements, respectively. It is worth noting that rank-average based ensemble evaluation calculated for different ensemble sizes could not improve the results further. We propose here that MD simulation can capture protein conformations representing the key interacting points of the receptor but less biased toward one specific chemotype. These conformations are useful for the identification of a "consensus" binding site with improved performance in virtual screening.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptores CXCR4/química , Receptores de Dopamina D3/química , Receptores Acoplados a Proteínas G/química , Receptores Histamínicos/química , Receptores de Serotonina/química , Área Sob a Curva , Sítios de Ligação , Cristalografia por Raios X , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Bicamadas Lipídicas/química , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Histamínicos H4 , Homologia Estrutural de Proteína , Termodinâmica , Interface Usuário-Computador
13.
PLoS One ; 18(9): e0289467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37669294

RESUMO

The adhesion of biomolecules to dental and orthopedic implants is a fundamental step in the process of osseointegration. Short peptide motifs, such as RGD or KRSR, carried by extracellular matrix proteins or coated onto implant surfaces, accelerate cell adhesion and tissue formation. For this reason, understanding the binding mechanisms of adhesive peptides to oxidized surfaces of titanium implants is of paramount importance. We performed molecular dynamics simulations to compare the adhesion properties of 6 peptides, including the tripeptide RGD, its variants KGD and LGD, as well as the tetrapeptide KRSR, its variant LRSR and its truncated version RSR, on anatase, rutile, and amorphous titanium dioxide (TiO2) surfaces. The migration of these molecules from the water phase to the surface was simulated in an aqueous environment. Based on these simulations, we calculated the residence time of each peptide bound to the three different TiO2 structures. It was found that the presence of an N-terminal lysine or arginine amino acid residue resulted in more efficient surface binding. A pulling simulation was performed to detach the adhered molecules. The maximum pulling force and the binding energy were determined from the results of these simulations. The tri- and tetrapeptides had slightly greater adhesion affinity to the amorphous and anatase structure than to rutile in general, however specific surface and peptide binding characters could be detected. The binding energies obtained from our simulations allowed us to rank the adhesion strengths of the studied peptides.


Assuntos
Simulação de Dinâmica Molecular , Titânio , Aminoácidos , Oligopeptídeos
14.
Pharmaceutics ; 15(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37111518

RESUMO

Single-stranded DNA-binding protein (SSB) is a bacterial interaction hub and an appealing target for antimicrobial therapy. Understanding the structural adaptation of the disordered SSB C-terminus (SSB-Ct) to DNA metabolizing enzymes (e.g., ExoI and RecO) is essential for designing high-affinity SSB mimetic inhibitors. Molecular dynamics simulations revealed the transient interactions of SSB-Ct with two hot spots on ExoI and RecO. The residual flexibility of the peptide-protein complexes allows adaptive molecular recognition. Scanning with non-canonical amino acids revealed that modifications at both termini of SSB-Ct could increase the affinity, supporting the two-hot-spot binding model. Combining unnatural amino acid substitutions on both segments of the peptide resulted in enthalpy-enhanced affinity, accompanied by enthalpy-entropy compensation, as determined by isothermal calorimetry. NMR data and molecular modeling confirmed the reduced flexibility of the improved affinity complexes. Our results highlight that the SSB-Ct mimetics bind to the DNA metabolizing targets through the hot spots, interacting with both of segments of the ligands.

15.
Biomolecules ; 12(3)2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35327555

RESUMO

Neurodegenerative diseases (NDDs) are characterized by progressive deterioration of the structure and function of cells and their networks in the nervous system. There are currently no drugs or other treatments that can stop the progression of NDDs. NDDs have many similarities and common pathways, e.g., formation of misfolded amyloid proteins, intra- and extracellular amyloid deposits, and chronic inflammation. Initially, the inflammation process has a cytoprotective function; however, an elevated and prolonged immune response has damaging effects and causes cell death. Neuroinflammation has been a target of drug development for treating and curing NDDs. Treatment of different NDDs with non-steroid anti-inflammatory drugs (NSAIDs) has failed or has given inconsistent results. The use of NSAIDs in diagnosed Alzheimer's disease is currently not recommended. Sigma-1 receptor (Sig-1R) is a novel target for NDD drug development. Sig-1R plays a key role in cellular stress signaling, and it regulates endoplasmic reticulum stress and unfolded protein response. Activation of Sig-1R provides neuroprotection in cell cultures and animal studies. Clinical trials demonstrated that several Sig-1R agonists (pridopidine, ANAVEX3-71, fluvoxamine, dextrometorphan) and their combinations have a neuroprotective effect and slow down the progression of distinct NDDs.


Assuntos
Doenças Neurodegenerativas , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Ligantes , Doenças Neurodegenerativas/metabolismo , Doenças Neuroinflamatórias , Receptores sigma , Receptor Sigma-1
16.
Eur J Pharmacol ; 925: 174983, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35487254

RESUMO

Platelets regulate cell-cell interactions and local circulation through eicosanoids from arachidonic acid. Sigma non-opioid intracellular receptor 1 (sigma-1 receptor) expressed in platelets and endothelial cells can regulate intracellular signalization. Our aim was to examine the influence of sub-chronic, in vivo-administered sigma-1 receptor ligands 2-morpholin-4-ylethyl 1-phenylcyclohexane-1-carboxylate (PRE-084); N-benzyl-2-[(1S)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl]ethan-1-amine; dihydrochloride, a new compound ((S)-L1); and N-[2-[4-methoxy-3-(2-phenylethoxy)phenyl]ethyl]-N-propylpropan-1-amine (NE-100) on the ex vivo arachidonic acid metabolism of the platelets and aorta of male rats. The serum level of sigma-1 receptor ligands was determined by liquid chromatography-mass spectrometry. Sigma-1 receptor and cyclooxygenase gene expression in the platelets were determined by a reverse transcription-coupled quantitative polymerase chain reaction. The eicosanoid synthesis was examined using a radiolabeled arachidonic acid substrate and enzyme-linked immunosorbent assay. We confirmed the absorption of sigma-1 receptor ligands and confirmed that the ligands were not present during the ex vivo studies, so their acute effect could be excluded. We detected no changes in either sigma-1 receptor or cyclooxygenase mRNA levels in the platelets. Nevertheless, (S)-L1 and NE-100 increased the quantity of cyclooxygenases there. Both platelet and aortic eicosanoid synthesis was modified by the ligands, although in different ways. The effect of the new sigma-1 receptor ligand, (S)-L1, was similar to that of PRE-084 in most of the parameters studied but was found to be more potent. Our results suggest that sigma-1 receptor ligands may act at multiple points in arachidonic acid metabolism and play an important role in the control of the microcirculation by modulating the eicosanoid synthesis of the platelets and vessels.


Assuntos
Plaquetas , Receptores sigma , Animais , Aorta/metabolismo , Ácidos Araquidônicos/metabolismo , Ciclo-Oxigenase 2/metabolismo , Eicosanoides/metabolismo , Células Endoteliais/metabolismo , Ligantes , Masculino , Ratos , Receptores sigma/metabolismo
17.
PLoS One ; 17(11): e0265854, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36395179

RESUMO

BACKGROUND: Diabetes mellitus is a chronic metabolic disorder which induces endothelial dysfunction and platelet activation. Eicosanoids produced from arachidonic acid regulate cellular and vascular functions. Sigma-1 receptors (S1R) are expressed in platelets and endothelial cells and S1R expression is protective in diabetes. OBJECTIVES: Our aim was to examine the influence of sub-chronic, in vivo administered S1R ligands PRE-084, (S)-L1 (a new compound) and NE-100 on the ex vivo arachidonic acid metabolism of platelets and aorta in streptozotocin-induced diabetic rats. METHODS: The serum level of the S1R ligands was detected by LC-MS/MS before the ex vivo analysis. Sigma-1 receptor and cyclooxygenase gene expression in platelets were determined by RT-qPCR. The eicosanoid synthesis was examined with a radiolabelled arachidonic acid substrate and ELISA. RESULTS: One month after the onset of STZ-induced diabetes, in vehicle-treated, diabetic rat platelet TxB2 and aortic 6-k-PGF1α production dropped. Sub-chronic in vivo treatment of STZ-induced diabetes in rats for one week with PRE-084 enhanced vasoconstrictor and platelet aggregator and reduced vasodilator and anti-aggregator cyclooxygenase product formation. (S)-L1 reduced the synthesis of vasodilator and anti-aggregator cyclooxygenase metabolites and promoted the recovery of physiological platelet function in diabetic rats. The S1R antagonist NE-100 produced no significant changes in platelet arachidonic acid metabolism. (S)-L1 decreased the synthesis of vasoconstrictor and platelet aggregator cyclooxygenase metabolites, whereas NE-100 increased the quantity of aortic vasodilator and anti-aggregator cyclooxygenase products and promoted the recovery of diabetic endothelial dysfunction in the aorta. The novel S1R ligand, (S)-L1 had similar effects on eicosanoid synthesis in platelets as the agonist PRE-084 and in aortas as the antagonist NE-100. CONCLUSIONS: S1R ligands regulate cellular functions and local blood circulation by influencing arachidonic acid metabolism. In diabetes mellitus, the cell-specific effects of S1R ligands have a compensatory role and aid in restoring physiological balance between the platelet and vessel.


Assuntos
Diabetes Mellitus Experimental , Animais , Ratos , Estreptozocina , Ácido Araquidônico/farmacologia , Diabetes Mellitus Experimental/metabolismo , Ligantes , Células Endoteliais/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ácidos Araquidônicos/metabolismo , Aorta/metabolismo , Eicosanoides , Ciclo-Oxigenase 2 , Vasodilatadores , Vasoconstritores , Receptor Sigma-1
18.
Biochem Pharmacol ; 199: 115023, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35358481

RESUMO

Kv1.3 K+ channels play a central role in the regulation of T cell activation and Ca2+ signaling under physiological and pathophysiological conditions. Peptide toxins targeting Kv1.3 have a significant therapeutic potential in the treatment of autoimmune diseases; thus, the discovery of new toxins is highly motivated. Based on the transcriptome analysis of the venom gland of V. mexicanus smithi a novel synthetic peptide, sVmKTx was generated, containing 36 amino acid residues. sVmKTx shows high sequence similarity to Vm24, a previously characterized peptide from the same species, but contains a Glu at position 32 as opposed to Lys32 in Vm24. Vm24 inhibits Kv1.3 with high affinity (Kd = 2.9 pM). However, it has limited selectivity (~1,500-fold) for Kv1.3 over hKv1.2, hKCa3.1, and mKv1.1. sVmKTx displays reduced Kv1.3 affinity (Kd = 770 pM) but increased selectivity for Kv1.3 over hKv1.2 (~9,000-fold) as compared to Vm24, other channels tested in the panel (hKCa3.1, hKv1.1, hKv1.4, hKv1.5, rKv2.1, hKv11.1, hKCa1.1, hNav1.5) were practically insensitive to the toxin at 2.5 µM. Molecular dynamics simulations showed that introduction of a Glu instead of Lys at position 32 led to a decreased structural fluctuation of the N-terminal segment of sVmKTx, which may explain its increased selectivity for Kv1.3. sVmKTx at 100 nM concentration decreased the expression level of the Ca2+ -dependent T cell activation marker, CD40 ligand. The high affinity block of Kv1.3 and increased selectivity over the natural peptide makes sVmKTx a potential candidate for Kv1.3 blockade-mediated treatment of autoimmune diseases.


Assuntos
Doenças Autoimunes , Venenos de Escorpião , Perfilação da Expressão Gênica , Humanos , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Venenos de Escorpião/química , Venenos de Escorpião/farmacologia , Linfócitos T/metabolismo
19.
J Inorg Biochem ; 216: 111330, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33360738

RESUMO

Our goal was to explore the possible interactions of the potential metallodrug (η5-Cp*)Rh(III) complexes with histidine containing biomolecules (peptides/proteins) in order to understand the most important thermodynamic factors influencing the biospeciation and biotransformation of (η5-Cp*)Rh(III) complexes. To this end, here we report systematic solution thermodynamic and solution structural study on the interaction of (η5-Cp*)Rh(III) cation with histidine containing peptides and their constituents ((N-methyl)imidazole, GGA-OH, GGH-OH, histidine-amide, HGG-OH, GHG-NH2), based on extensive 1H NMR, ESI-MS and potentiometric investigations. The comparative evaluation of our data indicated that (η5-Cp*)Rh(III) cation is able to induce the deprotonation of amide nitrogen well below pH 7. Consequently, at physiological pH the peptides are coordinated to Rh(III) by tridentate manner, with the participation of amide nitrogen. At pH 7.4 the (η5-Cp*)Rh(III) binding affinity of peptides follow the order GGA-OH < < GGH-OH < < histidine-amide < HGG-OH < GHG-NH2, i.e. the observed binding strength essentially depends on the presence and position of histidine within the peptide sequence. We also performed computational study on the possible solution structures of complexes present at near physiological pH. At pH 7.4 all histidine containing peptides form ternary complexes with strongly coordinating (N,N) bidentate ligands (ethylenediamine or bipyridyl), in which the peptides are monodentately coordinated to Rh(III) through their imidazole N1­nitrogens. In addition, the strongest chelators histidine-amide, HGG-OH and GHG-NH2 are also able to displace these powerful bidentate ligands from the coordination sphere of Rh(III).


Assuntos
Complexos de Coordenação/química , Histidina/química , Peptídeos/química , Ródio/química
20.
Int J Biol Macromol ; 175: 19-29, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33508363

RESUMO

The interactions of graphene oxide (GO), a 2-dimensional nanomaterial with hydrophilic edges, hydrophobic basal plane and large flat surfaces, with biological macromolecules, are of key importance for the development of novel nanomaterials for biomedical applications. To gain more insight into the interaction of GO flakes with human serum albumin (HSA), we examined GO binding to HSA in its isolated state and in blood plasma. Calorimetric data reveal that GO strongly stabilizes free isolated HSA against a thermal challenge at low ionic strength, indicating strong binding interactions, confirmed by the drop in ζ-potential of the HSA/GO assemblies compared to bare GO flakes. However, calorimetry also revealed that the HSA-GO molecular interaction is hampered in blood plasma, the ionic strength being particularly important for the interactions. Molecular modelling calculations are in full concert with these experimental findings, indicating a considerably higher binding affinity for HSA to GO in its partially unfolded state, characteristic to low-ionic-strength environment, than for the native protein conformation, observed under physiological conditions. Therefore, for the first time we demonstrate an impeded interaction between HSA and GO nanoflakes in blood plasma, and suggest that the protein is protected from the plausible toxic effects of GO under native conditions.


Assuntos
Grafite/metabolismo , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Sítios de Ligação , Calorimetria , Grafite/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulação de Acoplamento Molecular , Plasma/química , Plasma/metabolismo , Ligação Proteica , Conformação Proteica , Albumina Sérica/química , Albumina Sérica/metabolismo , Espectrometria de Fluorescência/métodos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa