Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nature ; 604(7906): 486-490, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35444322

RESUMO

Marine heatwaves (MHWs)-periods of exceptionally warm ocean temperature lasting weeks to years-are now widely recognized for their capacity to disrupt marine ecosystems1-3. The substantial ecological and socioeconomic impacts of these extreme events present significant challenges to marine resource managers4-7, who would benefit from forewarning of MHWs to facilitate proactive decision-making8-11. However, despite extensive research into the physical drivers of MHWs11,12, there has been no comprehensive global assessment of our ability to predict these events. Here we use a large multimodel ensemble of global climate forecasts13,14 to develop and assess MHW forecasts that cover the world's oceans with lead times of up to a year. Using 30 years of retrospective forecasts, we show that the onset, intensity and duration of MHWs are often predictable, with skilful forecasts possible from 1 to 12 months in advance depending on region, season and the state of large-scale climate modes, such as the El Niño/Southern Oscillation. We discuss considerations for setting decision thresholds based on the probability that a MHW will occur, empowering stakeholders to take appropriate actions based on their risk profile. These results highlight the potential for operational MHW forecasts, analogous to forecasts of extreme weather phenomena, to promote climate resilience in global marine ecosystems.

2.
Nature ; 584(7819): 82-86, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760046

RESUMO

Marine heatwaves (MHWs)-discrete but prolonged periods of anomalously warm ocean temperatures-can drastically alter ocean ecosystems, with profound ecological and socioeconomic impacts1-8. Considerable effort has been directed at understanding the patterns, drivers and trends of MHWs globally9-11. Typically, MHWs are characterized on the basis of their intensity and persistence at a given location-an approach that is particularly relevant for corals and other sessile organisms that must endure increased temperatures. However, many ecologically and commercially important marine species respond to environmental disruptions by relocating to favourable habitats, and dramatic range shifts of mobile marine species are among the conspicuous impacts of MHWs1,4,12,13. Whereas spatial temperature shifts have been studied extensively in the context of long-term warming trends14-18, they are unaccounted for in existing global MHW analyses. Here we introduce thermal displacement as a metric that characterizes MHWs by the spatial shifts of surface temperature contours, instead of by local temperature anomalies, and use an observation-based global sea surface temperature dataset to calculate thermal displacements for all MHWs from 1982 to 2019. We show that thermal displacements during MHWs vary from tens to thousands of kilometres across the world's oceans and do not correlate spatially with MHW intensity. Furthermore, short-term thermal displacements during MHWs are of comparable magnitude to century-scale shifts inferred from warming trends18, although their global spatial patterns are very different. These results expand our understanding of MHWs and their potential impacts on marine species, revealing which regions are most susceptible to thermal displacement, and how such shifts may change under projected ocean warming. The findings also highlight the need for marine resource management to account for MHW-driven spatial shifts, which are of comparable scale to those associated with long-term climate change and are already happening.


Assuntos
Migração Animal , Organismos Aquáticos , Ecossistema , Calor Extremo , Aquecimento Global , Água do Mar/análise , Animais , Calor Extremo/efeitos adversos , Aquecimento Global/estatística & dados numéricos , História do Século XX , História do Século XXI , Modelos Teóricos , Oceanos e Mares
4.
Proc Biol Sci ; 290(1992): 20222326, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36750186

RESUMO

Forage fishes are key energy conduits that transfer primary and secondary productivity to higher trophic levels. As novel environmental conditions caused by climate change alter ecosystems and predator-prey dynamics, there is a critical need to understand how forage fish control bottom-up forcing of food web dynamics. In the northeast Pacific, northern anchovy (Engraulis mordax) is an important forage species with high interannual variability in population size that subsequently impacts the foraging and reproductive ecology of marine predators. Anchovy habitat suitability from a species distribution model (SDM) was assessed as an indicator of the diet, distribution and reproduction of four predator species. Across 22 years (1998-2019), this anchovy ecosystem indicator (AEI) was significantly positively correlated with diet composition of all species and the distribution of common murres (Uria aalge), Brandt's cormorants (Phalacrocorax penicillatus) and California sea lions (Zalophus californianus), but not rhinoceros auklets (Cerorhinca monocerata). The capacity for the AEI to explain variability in predator reproduction varied by species but was strongest with cormorants and sea lions. The AEI demonstrates the utility of forage SDMs in creating ecosystem indicators to guide ecosystem-based management.


Assuntos
Charadriiformes , Ecossistema , Animais , Cadeia Alimentar , Aves , Peixes , Reprodução
5.
Ecol Appl ; 33(6): e2893, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37285072

RESUMO

Species distribution models (SDMs) are becoming an important tool for marine conservation and management. Yet while there is an increasing diversity and volume of marine biodiversity data for training SDMs, little practical guidance is available on how to leverage distinct data types to build robust models. We explored the effect of different data types on the fit, performance and predictive ability of SDMs by comparing models trained with four data types for a heavily exploited pelagic fish, the blue shark (Prionace glauca), in the Northwest Atlantic: two fishery dependent (conventional mark-recapture tags, fisheries observer records) and two fishery independent (satellite-linked electronic tags, pop-up archival tags). We found that all four data types can result in robust models, but differences among spatial predictions highlighted the need to consider ecological realism in model selection and interpretation regardless of data type. Differences among models were primarily attributed to biases in how each data type, and the associated representation of absences, sampled the environment and summarized the resulting species distributions. Outputs from model ensembles and a model trained on all pooled data both proved effective for combining inferences across data types and provided more ecologically realistic predictions than individual models. Our results provide valuable guidance for practitioners developing SDMs. With increasing access to diverse data sources, future work should further develop truly integrative modeling approaches that can explicitly leverage the strengths of individual data types while statistically accounting for limitations, such as sampling biases.


Assuntos
Biodiversidade , Tubarões , Animais , Peixes , Pesqueiros , Previsões , Ecossistema
6.
Glob Chang Biol ; 28(22): 6586-6601, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35978484

RESUMO

Projecting the future distributions of commercially and ecologically important species has become a critical approach for ecosystem managers to strategically anticipate change, but large uncertainties in projections limit climate adaptation planning. Although distribution projections are primarily used to understand the scope of potential change-rather than accurately predict specific outcomes-it is nonetheless essential to understand where and why projections can give implausible results and to identify which processes contribute to uncertainty. Here, we use a series of simulated species distributions, an ensemble of 252 species distribution models, and an ensemble of three regional ocean climate projections, to isolate the influences of uncertainty from earth system model spread and from ecological modeling. The simulations encompass marine species with different functional traits and ecological preferences to more broadly address resource manager and fishery stakeholder needs, and provide a simulated true state with which to evaluate projections. We present our results relative to the degree of environmental extrapolation from historical conditions, which helps facilitate interpretation by ecological modelers working in diverse systems. We found uncertainty associated with species distribution models can exceed uncertainty generated from diverging earth system models (up to 70% of total uncertainty by 2100), and that this result was consistent across species traits. Species distribution model uncertainty increased through time and was primarily related to the degree to which models extrapolated into novel environmental conditions but moderated by how well models captured the underlying dynamics driving species distributions. The predictive power of simulated species distribution models remained relatively high in the first 30 years of projections, in alignment with the time period in which stakeholders make strategic decisions based on climate information. By understanding sources of uncertainty, and how they change at different forecast horizons, we provide recommendations for projecting species distribution models under global climate change.


Assuntos
Mudança Climática , Ecossistema , Pesqueiros , Previsões , Incerteza
7.
Proc Natl Acad Sci U S A ; 116(12): 5582-5587, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30804188

RESUMO

In terrestrial systems, the green wave hypothesis posits that migrating animals can enhance foraging opportunities by tracking phenological variation in high-quality forage across space (i.e., "resource waves"). To track resource waves, animals may rely on proximate cues and/or memory of long-term average phenologies. Although there is growing evidence of resource tracking in terrestrial migrants, such drivers remain unevaluated in migratory marine megafauna. Here we present a test of the green wave hypothesis in a marine system. We compare 10 years of blue whale movement data with the timing of the spring phytoplankton bloom resulting in increased prey availability in the California Current Ecosystem, allowing us to investigate resource tracking both contemporaneously (response to proximate cues) and based on climatological conditions (memory) during migrations. Blue whales closely tracked the long-term average phenology of the spring bloom, but did not track contemporaneous green-up. In addition, blue whale foraging locations were characterized by low long-term habitat variability and high long-term productivity compared with contemporaneous measurements. Results indicate that memory of long-term average conditions may have a previously underappreciated role in driving migratory movements of long-lived species in marine systems, and suggest that these animals may struggle to respond to rapid deviations from historical mean environmental conditions. Results further highlight that an ecological theory of migration is conserved across marine and terrestrial systems. Understanding the drivers of animal migration is critical for assessing how environmental changes will affect highly mobile fauna at a global scale.


Assuntos
Migração Animal/fisiologia , Balaenoptera/fisiologia , Animais , Balaenoptera/psicologia , California , Ecossistema , Memória/fisiologia , Movimento
8.
Proc Biol Sci ; 288(1956): 20210671, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34344182

RESUMO

Animal migrations track predictable seasonal patterns of resource availability and suitable thermal habitat. As climate change alters this 'energy landscape', some migratory species may struggle to adapt. We examined how climate variability influences movements, thermal habitat selection and energy intake by juvenile Pacific bluefin tuna (Thunnus orientalis) during seasonal foraging migrations in the California Current. We tracked 242 tuna across 15 years (2002-2016) with high-resolution archival tags, estimating their daily energy intake via abdominal warming associated with digestion (the 'heat increment of feeding'). The poleward extent of foraging migrations was flexible in response to climate variability, allowing tuna to track poleward displacements of thermal habitat where their standard metabolic rates were minimized. During a marine heatwave that saw temperature anomalies of up to +2.5°C in the California Current, spatially explicit energy intake by tuna was approximately 15% lower than average. However, by shifting their mean seasonal migration approximately 900 km poleward, tuna remained in waters within their optimal temperature range and increased their energy intake. Our findings illustrate how tradeoffs between physiology and prey availability structure migration in a highly mobile vertebrate, and suggest that flexible migration strategies can buffer animals against energetic costs associated with climate variability and change.


Assuntos
Migração Animal , Atum , Animais , Mudança Climática , Ecossistema , Temperatura
9.
Ecol Appl ; 31(6): e02358, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33870598

RESUMO

Earth-observing satellites are a major research tool for spatially explicit ecosystem nowcasting and forecasting. However, there are practical challenges when integrating satellite data into usable real-time products for stakeholders. The need of forecast immediacy and accuracy means that forecast systems must account for missing data and data latency while delivering a timely, accurate, and actionable product to stakeholders. This is especially true for species that have legal protection. Acipenser oxyrinchus oxyrinchus (Atlantic sturgeon) were listed under the United States Endangered Species Act in 2012, which triggered immediate management action to foster population recovery and increase conservation measures. Building upon an existing research occurrence model, we developed an Atlantic sturgeon forecast system in the Delaware Bay, USA. To overcome missing satellite data due to clouds and produce a 3-d forecast of ocean conditions, we implemented data interpolating empirical orthogonal functions (DINEOF) on daily observed satellite data. We applied the Atlantic sturgeon research model to the DINEOF output and found that it correctly predicted Atlantic sturgeon telemetry occurrences over 90% of the time within a 3-d forecast. A similar framework has been utilized to forecast harmful algal blooms, but to our knowledge, this is the first time a species distribution model has been applied to DINEOF gap-filled data to produce a forecast product for fishes. To implement this product into an applied management setting, we worked with state and federal organizations to develop real-time and forecasted risk maps in the Delaware River Estuary for both state-level managers and commercial fishers. An automated system creates and distributes these risk maps to subscribers' mobile devices, highlighting areas that should be avoided to reduce interactions. Additionally, an interactive web interface allows users to plot historic, current, future, and climatological risk maps as well as the underlying model output of Atlantic sturgeon occurrence. The mobile system and web tool provide both stakeholders and managers real-time access to estimated occurrences of Atlantic sturgeon, enabling conservation planning and informing fisher behavior to reduce interactions with this endangered species while minimizing impacts to fisheries and other projects.


Assuntos
Ecossistema , Espécies em Perigo de Extinção , Imagens de Satélites , Animais , Baías , Delaware , Pesqueiros , Peixes , Rios , Telemetria
10.
Proc Natl Acad Sci U S A ; 115(28): 7362-7367, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29941592

RESUMO

Incidental catch of nontarget species (bycatch) is a major barrier to ecological and economic sustainability in marine capture fisheries. Key to mitigating bycatch is an understanding of the habitat requirements of target and nontarget species and the influence of heterogeneity and variability in the dynamic marine environment. While patterns of overlap among marine capture fisheries and habitats of a taxonomically diverse range of marine vertebrates have been reported, a mechanistic understanding of the real-time physical drivers of bycatch events is lacking. Moving from describing patterns toward understanding processes, we apply a Lagrangian analysis to a high-resolution ocean model output to elucidate the fundamental mechanisms that drive fisheries interactions. We find that the likelihood of marine megafauna bycatch is intensified in attracting Lagrangian coherent structures associated with submesoscale and mesoscale filaments, fronts, and eddies. These results highlight how the real-time tracking of dynamic structures in the oceans can support fisheries sustainability and advance ecosystem-based management.


Assuntos
Organismos Aquáticos/fisiologia , Ecossistema , Pesqueiros , Peixes/fisiologia , Modelos Biológicos , Oceanos e Mares , Animais
11.
Conserv Biol ; 34(3): 589-599, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31486126

RESUMO

Spatial management is a valuable strategy to advance regional goals for nature conservation, economic development, and human health. One challenge of spatial management is navigating the prioritization of multiple features. This challenge becomes more pronounced in dynamic management scenarios, in which boundaries are flexible in space and time in response to changing biological, environmental, or socioeconomic conditions. To implement dynamic management, decision-support tools are needed to guide spatial prioritization as feature distributions shift under changing conditions. Marxan is a widely applied decision-support tool designed for static management scenarios, but its utility in dynamic management has not been evaluated. EcoCast is a new decision-support tool developed explicitly for the dynamic management of multiple features, but it lacks some of Marxan's functionality. We used a hindcast analysis to compare the capacity of these 2 tools to prioritize 4 marine species in a dynamic management scenario for fisheries sustainability. We successfully configured Marxan to operate dynamically on a daily time scale to resemble EcoCast. The relationship between EcoCast solutions and the underlying species distributions was more linear and less noisy, whereas Marxan solutions had more contrast between waters that were good and poor to fish. Neither decision-support tool clearly outperformed the other; the appropriateness of each depends on management purpose, resource-manager preference, and technological capacity of tool developers. Article impact statement: Marxan can function as a decision-support tool for dynamic management scenarios in which boundaries are flexible in space and time.


Herramientas de Apoyo para la Toma de Decisiones en el Manejo Dinámico Resumen El manejo espacial es una estrategia valiosa para llevar hacia adelante los objetivos regionales para la conservación de la naturaleza, el desarrollo económico y la salud humana. Uno de los retos del manejo espacial es la navegación a través de la priorización de múltiples caracteres. Este reto se vuelve más pronunciado dentro de los escenarios de manejo dinámico, en los cuales los límites son flexibles en el tiempo y en el espacio como respuesta a las cambiantes condiciones biológicas, ambientales o socioeconómicas. Para implementar el manejo dinámico, se necesitan herramientas de apoyo para la toma de decisiones para guiar a la priorización espacial conforme la distribución de los caracteres se modifica bajo condiciones cambiantes. Marxan es una herramienta de apoyo para la toma de decisiones utilizada ampliamente y diseñada para escenarios de manejo estático, pero su utilidad para el manejo dinámico no ha sido evaluada. EcoCast es una nueva herramienta de apoyo para la toma de decisiones desarrollada explícitamente para el manejo dinámico de múltiples caracteres, pero carece de algunas funcionalidades que tiene Marxan. Usamos un análisis de información retrospectiva para comparar la capacidad de estas dos herramientas para priorizar a cuatro especies marinas en un escenario de manejo dinámico con respecto a la sustentabilidad de las pesquerías. Configuramos exitosamente la herramienta Marxan para que operara dinámicamente con respecto a una escala diaria de tiempo y así se asemejara a EcoCast. La relación entre las soluciones de EcoCast y las distribuciones subyacentes de las especies fue más lineal y menos ruidosa, mientras que las soluciones de Marxan tuvieron un mayor contraste entre las aguas que eran buenas y aquellas que eran pobres para los peces. Ninguna de las dos herramientas de apoyo para la toma de decisiones tuvo un mejor desempeño que la otra; la pertinencia de cada una depende del propósito del manejo, la preferencia del administrador de los recursos y la capacidad tecnológica de quienes desarrollan la herramienta.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Animais , Ecossistema , Peixes , Humanos
12.
Ecol Lett ; 21(1): 63-71, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29096419

RESUMO

Individual behavioural specialisation has far-reaching effects on fitness and population persistence. Theory predicts that unconditional site fidelity, that is fidelity to a site independent of past outcome, provides a fitness advantage in unpredictable environments. However, the benefits of alternative site fidelity strategies driving intraspecific variation remain poorly understood and have not been evaluated in different environmental contexts. We show that contrary to expectation, strong and weak site fidelity strategies in migratory northern elephant seals performed similarly over 10 years, but the success of each strategy varied interannually and was strongly mediated by climate conditions. Strong fidelity facilitated stable energetic rewards and low risk, while weak fidelity facilitated high rewards and high risk. Weak fidelity outperformed strong fidelity in anomalous climate conditions, suggesting that the evolutionary benefits of site fidelity may be upended by increasing environmental variability. We highlight how individual behavioural specialisation may modulate the adaptive capacity of species to climate change.


Assuntos
Migração Animal , Mudança Climática , Focas Verdadeiras , Animais
13.
Proc Biol Sci ; 285(1885)2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30135161

RESUMO

How animal movement decisions interact with the distribution of resources to shape individual performance is a key question in ecology. However, links between spatial and behavioural ecology and fitness consequences are poorly understood because the outcomes of individual resource selection decisions, such as energy intake, are rarely measured. In the open ocean, mesoscale features (approx. 10-100 km) such as fronts and eddies can aggregate prey and thereby drive the distribution of foraging vertebrates through bottom-up biophysical coupling. These productive features are known to attract predators, yet their role in facilitating energy transfer to top-level consumers is opaque. We investigated the use of mesoscale features by migrating northern elephant seals and quantified the corresponding energetic gains from the seals' foraging patterns at a daily resolution. Migrating elephant seals modified their diving behaviour and selected for mesoscale features when foraging. Daily energy gain increased significantly with increasing mesoscale activity, indicating that the physical environment can influence predator fitness at fine temporal scales. Results show that areas of high mesoscale activity not only attract top predators as foraging hotspots, but also lead to increased energy transfer across trophic levels. Our study provides evidence that the physical environment is an important factor in controlling energy flow to top predators by setting the stage for variation in resource availability. Such understanding is critical for assessing how changes in the environment and resource distribution will affect individual fitness and food web dynamics.


Assuntos
Ingestão de Energia , Comportamento Alimentar , Cadeia Alimentar , Focas Verdadeiras/fisiologia , Migração Animal , Animais , Mergulho , Comportamento Predatório
14.
Glob Chang Biol ; 24(6): 2305-2314, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29575413

RESUMO

Along the western margin of North America, the winter expression of the North Pacific High (NPH) strongly influences interannual variability in coastal upwelling, storm track position, precipitation, and river discharge. Coherence among these factors induces covariance among physical and biological processes across adjacent marine and terrestrial ecosystems. Here, we show that over the past century the degree and spatial extent of this covariance (synchrony) has substantially increased, and is coincident with rising variance in the winter NPH. Furthermore, centuries-long blue oak (Quercus douglasii) growth chronologies sensitive to the winter NPH provide robust evidence that modern levels of synchrony are among the highest observed in the context of the last 250 years. These trends may ultimately be linked to changing impacts of the El Niño Southern Oscillation on midlatitude ecosystems of North America. Such a rise in synchrony may destabilize ecosystems, expose populations to higher risks of extinction, and is thus a concern given the broad biological relevance of winter climate to biological systems.


Assuntos
Mudança Climática , Ecossistema , El Niño Oscilação Sul , Monitoramento Ambiental , Rios , Estações do Ano , Estados Unidos
15.
Ecol Appl ; 27(8): 2313-2329, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28833890

RESUMO

The ocean is a dynamic environment inhabited by a diverse array of highly migratory species, many of which are under direct exploitation in targeted fisheries. The timescales of variability in the marine realm coupled with the extreme mobility of ocean-wandering species such as tuna and billfish complicates fisheries management. Developing eco-informatics solutions that allow for near real-time prediction of the distributions of highly mobile marine species is an important step towards the maturation of dynamic ocean management and ecological forecasting. Using 25 yr (1990-2014) of NOAA fisheries' observer data from the California drift gillnet fishery, we model relative probability of occurrence (presence-absence) and catchability (total catch per gillnet set) of broadbill swordfish Xiphias gladius in the California Current System. Using freely available environmental data sets and open source software, we explore the physical drivers of regional swordfish distribution. Comparing models built upon remotely sensed data sets with those built upon a data-assimilative configuration of the Regional Ocean Modelling System (ROMS), we explore trade-offs in model construction, and address how physical data can affect predictive performance and operational capacity. Swordfish catchability was found to be highest in deeper waters (>1,500 m) with surface temperatures in the 14-20°C range, isothermal layer depth (ILD) of 20-40 m, positive sea surface height (SSH) anomalies, and during the new moon (<20% lunar illumination). We observed a greater influence of mesoscale variability (SSH, wind speed, isothermal layer depth, eddy kinetic energy) in driving swordfish catchability (total catch) than was evident in predicting the relative probability of presence (presence-absence), confirming the utility of generating spatiotemporally dynamic predictions. Data-assimilative ROMS circumvent the limitations of satellite remote sensing in providing physical data fields for species distribution models (e.g., cloud cover, variable resolution, subsurface data), and facilitate broad-scale prediction of dynamic species distributions in near real time.


Assuntos
Pesqueiros , Peixes , Tecnologia de Sensoriamento Remoto/métodos , Animais , California , Biologia Computacional , Ecologia , Modelos Biológicos , Oceano Pacífico
17.
Proc Biol Sci ; 281(1777): 20132559, 2014 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-24403331

RESUMO

Fisheries bycatch is a critical source of mortality for rapidly declining populations of leatherback turtles, Dermochelys coriacea. We integrated use-intensity distributions for 135 satellite-tracked adult turtles with longline fishing effort to estimate predicted bycatch risk over space and time in the Pacific Ocean. Areas of predicted bycatch risk did not overlap for eastern and western Pacific nesting populations, warranting their consideration as distinct management units with respect to fisheries bycatch. For western Pacific nesting populations, we identified several areas of high risk in the north and central Pacific, but greatest risk was adjacent to primary nesting beaches in tropical seas of Indo-Pacific islands, largely confined to several exclusive economic zones under the jurisdiction of national authorities. For eastern Pacific nesting populations, we identified moderate risk associated with migrations to nesting beaches, but the greatest risk was in the South Pacific Gyre, a broad pelagic zone outside national waters where management is currently lacking and may prove difficult to implement. Efforts should focus on these predicted hotspots to develop more targeted management approaches to alleviate leatherback bycatch.


Assuntos
Migração Animal , Conservação dos Recursos Naturais/métodos , Pesqueiros , Tartarugas/fisiologia , Animais , Oceano Pacífico , Tecnologia de Sensoriamento Remoto
18.
Glob Chang Biol ; 20(6): 1832-43, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24443361

RESUMO

Climate-driven range shifts are ongoing in pelagic marine environments, and ecosystems must respond to combined effects of altered species distributions and environmental drivers. Hypoxic oxygen minimum zones (OMZs) in midwater environments are shoaling globally; this can affect distributions of species both geographically and vertically along with predator-prey dynamics. Humboldt (jumbo) squid (Dosidicus gigas) are highly migratory predators adapted to hypoxic conditions that may be deleterious to their competitors and predators. Consequently, OMZ shoaling may preferentially facilitate foraging opportunities for Humboldt squid. With two separate modeling approaches using unique, long-term data based on in situ observations of predator, prey, and environmental variables, our analyses suggest that Humboldt squid are indirectly affected by OMZ shoaling through effects on a primary food source, myctophid fishes. Our results suggest that this indirect linkage between hypoxia and foraging is an important driver of the ongoing range expansion of Humboldt squid in the northeastern Pacific Ocean.


Assuntos
Distribuição Animal , Mudança Climática , Decapodiformes/fisiologia , Peixes/fisiologia , Cadeia Alimentar , Animais , Modelos Biológicos , Oceano Pacífico , Dinâmica Populacional
19.
Sci Rep ; 14(1): 14857, 2024 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937635

RESUMO

Social information is predicted to enhance the quality of animals' migratory decisions in dynamic ecosystems, but the relative benefits of social information in the long-range movements of marine megafauna are unknown. In particular, whether and how migrants use nonlocal information gained through social communication at the large spatial scale of oceanic ecosystems remains unclear. Here we test hypotheses about the cues underlying timing of blue whales' breeding migration in the Northeast Pacific via individual-based models parameterized by empirical behavioral data. Comparing emergent patterns from individual-based models to individual and population-level empirical metrics of migration timing, we find that individual whales likely rely on both personal and social sources of information about forage availability in deciding when to depart from their vast and dynamic foraging habitat and initiate breeding migration. Empirical patterns of migratory phenology can only be reproduced by models in which individuals use long-distance social information about conspecifics' behavioral state, which is known to be encoded in the patterning of their widely propagating songs. Further, social communication improves pre-migration seasonal foraging performance by over 60% relative to asocial movement mechanisms. Our results suggest that long-range communication enhances the perceptual ranges of migrating whales beyond that of any individual, resulting in increased foraging performance and more collective migration timing. These findings indicate the value of nonlocal social information in an oceanic migrant and suggest the importance of long-distance acoustic communication in the collective migration of wide-ranging marine megafauna.


Assuntos
Migração Animal , Animais , Migração Animal/fisiologia , Ecossistema , Baleias/fisiologia , Comunicação Animal , Estações do Ano , Comportamento Social
20.
Nat Commun ; 14(1): 7701, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052808

RESUMO

Forecasting weather has become commonplace, but as society faces novel and uncertain environmental conditions there is a critical need to forecast ecology. Forewarning of ecosystem conditions during climate extremes can support proactive decision-making, yet applications of ecological forecasts are still limited. We showcase the capacity for existing marine management tools to transition to a forecasting configuration and provide skilful ecological forecasts up to 12 months in advance. The management tools use ocean temperature anomalies to help mitigate whale entanglements and sea turtle bycatch, and we show that forecasts can forewarn of human-wildlife interactions caused by unprecedented climate extremes. We further show that regionally downscaled forecasts are not a necessity for ecological forecasting and can be less skilful than global forecasts if they have fewer ensemble members. Our results highlight capacity for ecological forecasts to be explored for regions without the infrastructure or capacity to regionally downscale, ultimately helping to improve marine resource management and climate adaptation globally.


Assuntos
Clima , Ecossistema , Humanos , Tempo (Meteorologia) , Temperatura , Previsões , Mudança Climática
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa