Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Rev Biomed Eng ; 16: 225-240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34919522

RESUMO

Since the advent of U-Net, fully convolutional deep neural networks and its many variants have completely changed the modern landscape of deep-learning based medical image segmentation. However, the over-dependence of these methods on pixel-level classification and regression has been identified early on as a problem. Especially when trained on medical databases with sparse available annotation, these methods are prone to generate segmentation artifacts such as fragmented structures, topological inconsistencies and islands of pixel. These artifacts are especially problematic in medical imaging since segmentation is almost always a pre-processing step for some downstream evaluations like surgical planning, visualization, prognosis, or treatment planning. However, one common thread across all these downstream tasks is the demand of anatomical consistency. To ensure the segmentation result is anatomically consistent, approaches based on Markov/ Conditional Random Fields, Statistical Shape Models, Active Contours are becoming increasingly popular over the past 5 years. In this review paper, a broad overview of recent literature on bringing explicit anatomical constraints for medical image segmentation is given, the shortcomings and opportunities are discussed and the potential shift towards implicit shape modelling is elaborated. We review the most relevant papers published until the submission date and provide a tabulated view with method details for quick access.


Assuntos
Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Modelos Estatísticos
2.
Int J Comput Assist Radiol Surg ; 15(11): 1825-1833, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33040277

RESUMO

PURPOSE: Robot-assisted surgery at the temporal bone utilizing a flexible drilling unit would allow safer access to clinical targets such as the cochlea or the internal auditory canal by navigating along nonlinear trajectories. One key sub-step for clinical realization of such a procedure is automated preoperative surgical planning that incorporates both segmentation of risk structures and optimized trajectory planning. METHODS: We automatically segment risk structures using 3D U-Nets with probabilistic active shape models. For nonlinear trajectory planning, we adapt bidirectional rapidly exploring random trees on Bézier Splines followed by sequential convex optimization. Functional evaluation, assessing segmentation quality based on the subsequent trajectory planning step, shows the suitability of our novel segmentation approach for this two-step preoperative pipeline. RESULTS: Based on 24 data sets of the temporal bone, we perform a functional evaluation of preoperative surgical planning. Our experiments show that the automated segmentation provides safe and coherent surface models that can be used in collision detection during motion planning. The source code of the algorithms will be made publicly available. CONCLUSION: Optimized trajectory planning based on shape regularized segmentation leads to safe access canals for temporal bone surgery. Functional evaluation shows the promising results for both 3D U-Net and Bézier Spline trajectories.


Assuntos
Procedimentos Cirúrgicos Otológicos/métodos , Procedimentos Cirúrgicos Robóticos , Osso Temporal/cirurgia , Algoritmos , Simulação por Computador , Humanos , Movimento (Física) , Estudos Retrospectivos , Software , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa