Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
J Bacteriol ; 206(4): e0009524, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38564677

RESUMO

Bacterial communities exhibit complex self-organization that contributes to their survival. To better understand the molecules that contribute to transforming a small number of cells into a heterogeneous surface biofilm community, we studied acellular aggregates, structures seen by light microscopy in Pseudomonas aeruginosa colony biofilms using light microscopy and chemical imaging. These structures differ from cellular aggregates, cohesive clusters of cells important for biofilm formation, in that they are visually distinct from cells using light microscopy and are reliant on metabolites for assembly. To investigate how these structures benefit a biofilm community we characterized three recurrent types of acellular aggregates with distinct geometries that were each abundant in specific areas of these biofilms. Alkyl quinolones (AQs) were essential for the formation of all aggregate types with AQ signatures outside the aggregates below the limit of detection. These acellular aggregates spatially sequester AQs and differentiate the biofilm space. However, the three types of aggregates showed differing properties in their size, associated cell death, and lipid content. The largest aggregate type co-localized with spatially confined cell death that was not mediated by Pf4 bacteriophage. Biofilms lacking AQs were absent of localized cell death but exhibited increased, homogeneously distributed cell death. Thus, these AQ-rich aggregates regulate metabolite accessibility, differentiate regions of the biofilm, and promote survival in biofilms.IMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen with the ability to cause infection in the immune-compromised. It is well established that P. aeruginosa biofilms exhibit resilience that includes decreased susceptibility to antimicrobial treatment. This work examines the self-assembled heterogeneity in biofilm communities studying acellular aggregates, regions of condensed matter requiring alkyl quinolones (AQs). AQs are important to both virulence and biofilm formation. Aggregate structures described here spatially regulate the accessibility of these AQs, differentiate regions of the biofilm community, and despite their association with autolysis, correlate with improved P. aeruginosa colony biofilm survival.


Assuntos
Infecções por Pseudomonas , Quinolonas , Humanos , Quinolonas/metabolismo , Biofilmes , Infecções por Pseudomonas/microbiologia , Virulência , Pseudomonas aeruginosa/metabolismo
2.
Small ; 20(5): e2304966, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37752777

RESUMO

The advent of 3D printing has facilitated the rapid fabrication of microfluidic devices that are accessible and cost-effective. However, it remains a challenge to fabricate sophisticated microfluidic devices with integrated structural and functional components due to limited material options of existing printing methods and their stringent requirement on feedstock material properties. Here, a multi-materials multi-scale hybrid printing method that enables seamless integration of a broad range of structural and functional materials into complex devices is reported. A fully printed and assembly-free microfluidic biosensor with embedded fluidic channels and functionalized electrodes at sub-100 µm spatial resolution for the amperometric sensing of lactate in sweat is demonstrated. The sensors present a sensitive response with a limit of detection of 442 nm and a linear dynamic range of 1-10 mm, which are performance characteristics relevant to physiological levels of lactate in sweat. The versatile hybrid printing method offers a new pathway toward facile fabrication of next-generation integrated devices for broad applications in point-of-care health monitoring and sensing.


Assuntos
Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip , Microfluídica , Técnicas Biossensoriais/métodos , Impressão Tridimensional , Lactatos
3.
Anal Chem ; 95(35): 12993-12997, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37615663

RESUMO

In this study, we use nanopore arrays as a platform for detecting and characterizing individual nanoparticles (NPs) in real time. Dark-field imaging of nanopores with dimensions smaller than the wavelength of light occurs under conditions where trans-illumination is blocked, while the scattered light propagates to the far-field, making it possible to identify nanopores. The intensity of scattering increases dramatically during insertion of AgNPs into empty nanopores, owing to their plasmonic properties. Thus, momentary occupation of a nanopore by a AgNP produces intensity transients that can be analyzed to reveal the following characteristics: (1) NP scattering intensity, which scales with the sixth power of the AgNP radius, shows a normal distribution arising from the heterogeneity in NP size, (2) the nanopore residence time of NPs, which was observed to be stochastic with no permselective effects, and (3) the frequency of AgNP capture events on a 21 × 21 nanopore array, which varies linearly with the concentration of the NPs, agreeing with the frequency calculated from theory. The lower limit of detection (LOD) for NPs was 130 fM, indicating that the measurement can be used in applications in which ultrasensitive detection is required. The results presented here provide valuable insights into the dynamics of NP transport into and out of nanopores and highlight the potential of nanopore arrays as powerful, massively parallel tools for nanoparticle characterization and detection.

4.
Anal Chem ; 94(9): 3970-3977, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35213143

RESUMO

Understanding functional states of individual redox enzymes is important because electron-transfer reactions are fundamental to life, and single-enzyme molecules exhibit molecule-to-molecule heterogeneity in their properties, such as catalytic activity. Zero-mode waveguides (ZMW) constitute a powerful tool for single-molecule studies, enabling investigations of binding reactions up to the micromolar range due to the ability to trap electromagnetic radiation in zeptoliter-scale observation volumes. Here, we report the potential-dependent fluorescence dynamics of single glutathione reductase (GR) molecules using a bimodal electrochemical ZMW (E-ZMW), where a single-ring electrode embedded in each of the nanopores of an E-ZMW array simultaneously serves to control electrochemical potential and to confine optical radiation within the nanopores. Here, the redox state of GR is manipulated using an external potential control of the Au electrode in the presence of a redox mediator, methyl viologen (MV). Redox-state transitions in GR are monitored by correlating electrochemical and spectroscopic signals from freely diffusing MV/GR in 60 zL effective observation volumes at single GR molecule average pore occupancy, ⟨n⟩ ∼ 0.8. Fluorescence intensities decrease (increase) at reducing (oxidizing) potentials for MV due to the MV-mediated control of the GR redox state. The spectroelectrochemical response of GR to the enzyme substrate, i.e., glutathione disulfide (GSSG), shows that GSSG promotes GR oxidation via enzymatic reduction. The capabilities of E-ZMWs to probe spectroelectrochemical phenomena in zL-scale-confined environments show great promise for the study of single-enzyme reactions and can be extended to important technological applications, such as those in molecular diagnostics.


Assuntos
Glutationa Redutase , Glutationa , Nanotecnologia , Imagem Individual de Molécula , Difusão , Fluorescência , Dissulfeto de Glutationa , Glutationa Redutase/química , Oxirredução , Imagem Individual de Molécula/métodos
5.
Faraday Discuss ; 233(0): 283-294, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34904977

RESUMO

Wetting and dewetting behavior in channel-confined hydrophobic volumes is used in biological membranes to effect selective ion/molecular transport. Artificial biomimetic hydrophobic nanopores have been devised utilizing wetting and dewetting, however, tunable mass transport control utilizing multiple transport modes is required for applications such as controllable release/transport, water separation/purification and energy conversion. Here, we investigate the potential-induced wetting and dewetting behavior in a pH-responsive membrane composed of a polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer (BCP) when fabricated as a hierarchically-organized sandwich structure on a nanopore electrode array (NEA), i.e. BCP@NEA. At pH < pKa(P4VP) (pKa ∼ 4.8), the BCP acts as an anion-exchange membrane due to the hydrophilic, protonated P4VP cylindrical nanodomains, but at pH > pKa(P4VP), the P4VP domains exhibit charge-neutral, hydrophobic and collapsed structures, blocking mass transport via the hydrophobic membrane. However, when originally prepared in a dewetted condition, mass transport in the BCP membrane may be switched on if sufficiently negative potentials are applied to the BCP@NEA architecture. When the hydrophobic BCP membrane is introduced on top of 2-electrode-embedded nanopore arrays, electrolyte solution in the nanopores is introduced, then isolated, by exploiting the potential-induced wetting and dewetting transitions in the BCP membrane. The potential-induced wetting/dewetting transition and the effect on cyclic voltammetry in the BCP@NEA structures is characterized as a function of the potential, pH and ionic strength. In addition, chronoamperometry and redox cycling experiments are used to further characterize the potential response. The multi-modal mass transport system proposed in this work will be useful for ultrasensitive sensing and single-molecule studies, which require long-time monitoring to explore reaction dynamics as well as molecular heterogeneity in nanoconfined volumes.


Assuntos
Nanoporos , Eletrodos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Nanotecnologia
6.
Anal Bioanal Chem ; 414(4): 1691-1698, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34850244

RESUMO

Myxococcus xanthus is a common soil bacterium with a complex life cycle, which is known for production of secondary metabolites. However, little is known about the effects of nutrient availability on M. xanthus metabolite production. In this study, we utilize confocal Raman microscopy (CRM) to examine the spatiotemporal distribution of chemical signatures secreted by M. xanthus and their response to varied nutrient availability. Ten distinct spectral features are observed by CRM from M. xanthus grown on nutrient-rich medium. However, when M. xanthus is constrained to grow under nutrient-limited conditions, by starving it of casitone, it develops fruiting bodies, and the accompanying Raman microspectra are dramatically altered. The reduced metabolic state engendered by the absence of casitone in the medium is associated with reduced, or completely eliminated, features at 1140 cm-1, 1560 cm-1, and 1648 cm-1. In their place, a feature at 1537 cm-1 is observed, this feature being tentatively assigned to a transitional phase important for cellular adaptation to varying environmental conditions. In addition, correlating principal component analysis heat maps with optical images illustrates how fruiting bodies in the center co-exist with motile cells at the colony edge. While the metabolites responsible for these Raman features are not completely identified, three M. xanthus peaks at 1004, 1151, and 1510 cm-1 are consistent with the production of lycopene. Thus, a combination of CRM imaging and PCA enables the spatial mapping of spectral signatures of secreted factors from M. xanthus and their correlation with metabolic conditions.


Assuntos
Myxococcus xanthus/metabolismo , Técnicas de Cultura de Células , Meios de Cultura/química , Meios de Cultura/metabolismo , Metaboloma , Myxococcus xanthus/química , Myxococcus xanthus/crescimento & desenvolvimento , Análise Espectral Raman
7.
Anal Chem ; 93(43): 14481-14488, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34661405

RESUMO

Pseudomonas aeruginosa produces a number of phenazine metabolites, including pyocyanin (PYO), phenazine-1-carboxamide (PCN), and phenazine-1-carboxylic acid (PCA). Among these, PYO has been most widely studied as a biomarker of P. aeruginosa infection. However, despite its broad-spectrum antibiotic properties and its role as a precursor in the biosynthetic route leading to other secondary phenazines, PCA has attracted less attention, partially due to its relatively low concentration and interference from other highly abundant phenazines. This challenge is addressed here by constructing a hierarchically organized nanostructure consisting of a pH-responsive block copolymer (BCP) membrane with nanopore electrode arrays (NEAs) filled with gold nanoparticles (AuNPs) to separate and detect PCA in bacterial environments. The BCP@NEA strategy is designed such that adjusting the pH of the bacterial medium to 4.5, which is above the pKa of PCA but below the pKa of PYO and PCN, ensures that PCA is negatively charged and can be selectively transported across the BCP membrane. At pH 4.5, only PCA is transported into the AuNP-filled NEAs, while PYO and PCN are blocked. Structural characterization illustrates the rigorous spatial segregation of the AuNPs in the NEA nanopore volume, allowing PCA secreted from P. aeruginosa to be quantitatively determined as a function of incubation time using square-wave voltammetry and surface-enhanced Raman spectroscopy. The strategy proposed in this study can be extended by changing the nature of the hydrophilic block and subsequently applied to detect other redox-active metabolites at a low concentration in complex biological samples and, thus, help understand metabolism in microbial communities.


Assuntos
Nanopartículas Metálicas , Nanoporos , Eletrodos , Ouro , Fenazinas , Pseudomonas aeruginosa , Piocianina
8.
Acc Chem Res ; 53(4): 719-728, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-31990518

RESUMO

Electrochemical measurements conducted in confined volumes provide a powerful and direct means to address scientific questions at the nexus of nanoscience, biotechnology, and chemical analysis. How are electron transfer and ion transport coupled in confined volumes and how does understanding them require moving beyond macroscopic theories? Also, how do these coupled processes impact electrochemical detection and processing? We address these questions by studying a special type of confined-volume architecture, the nanopore electrode array, or NEA, which is designed to be commensurate in size with physical scaling lengths, such as the Debye length, a concordance that offers performance characteristics not available in larger scale structures.The experiments described here depend critically on carefully constructed nanoscale architectures that can usefully control molecular transport and electrochemical reactivity. We begin by considering the experimental constraints that guide the design and fabrication of zero-dimensional nanopore arrays with multiple embedded electrodes. These zero-dimensional structures are nearly ideal for exploring how permselectivity and unscreened ion migration can be combined to amplify signals and improve selectivity by enabling highly efficient redox cycling. Our studies also highlight the benefits of arrays, in that molecules escaping from a single nanopore are efficiently captured by neighboring pores and returned to the population of active redox species being measured, benefits that arise from coupling ion accumulation and migration. These tools for manipulating redox species are well-positioned to explore single molecule and single particle electron transfer events through spectroelectrochemistry, studies which are enabled by the electrochemical zero-mode waveguide (ZMW), a special hybrid nanophotonic/nanoelectronic architecture in which the lower ring electrode of an NEA nanopore functions both as a working electrode to initiate electron transfer reactions and as the optical cladding layer of a ZMW. While the work described here is largely exploratory and fundamental, we believe that the development of NEAs will enable important applications that emerge directly from the unique coupled transport and electron-transfer capabilities of NEAs, including in situ molecular separation and detection with external stimuli, redox-based electrochemical rectification in individually encapsulated nanopores, and coupled sorters and analyzers for nanoparticles.


Assuntos
Eletroquímica/instrumentação , Nanoporos , Nanotecnologia/instrumentação , Eletrodos , Transporte de Elétrons
9.
Analyst ; 147(1): 22-34, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34874024

RESUMO

Microbes, such as bacteria, can be described, at one level, as small, self-sustaining chemical factories. Based on the species, strain, and even the environment, bacteria can be useful, neutral or pathogenic to human life, so it is increasingly important that we be able to characterize them at the molecular level with chemical specificity and spatial and temporal resolution in order to understand their behavior. Bacterial metabolism involves a large number of internal and external electron transfer processes, so it is logical that electrochemical techniques have been employed to investigate these bacterial metabolites. In this mini-review, we focus on electrochemical and spectroelectrochemical methods that have been developed and used specifically to chemically characterize bacteria and their behavior. First, we discuss the latest mechanistic insights and current understanding of microbial electron transfer, including both direct and mediated electron transfer. Second, we summarize progress on approaches to spatiotemporal characterization of secreted factors, including both metabolites and signaling molecules, which can be used to discern how natural or external factors can alter metabolic states of bacterial cells and change either their individual or collective behavior. Finally, we address in situ methods of single-cell characterization, which can uncover how heterogeneity in cell behavior is reflected in the behavior and properties of collections of bacteria, e.g. bacterial communities. Recent advances in (spectro)electrochemical characterization of bacteria have yielded important new insights both at the ensemble and the single-entity levels, which are furthering our understanding of bacterial behavior. These insights, in turn, promise to benefit applications ranging from biosensors to the use of bacteria in bacteria-based bioenergy generation and storage.


Assuntos
Bactérias , Eventos de Massa , Bactérias/genética , Humanos
10.
Analyst ; 146(4): 1346-1354, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33393560

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa) produces several redox-active phenazine metabolites, including pyocyanin (PYO) and phenazine-1-carboxamide (PCN), which are electron carrier molecules that also aid in virulence. In particular, PYO is an exclusive metabolite produced by P. aeruginosa, which acts as a virulence factor in hospital-acquired infections and is therefore a good biomarker for identifying early stage colonization by this pathogen. Here, we describe the use of nanopore electrode arrays (NEAs) exhibiting metal-insulator-metal ring electrode architectures for enhanced detection of these phenazine metabolites. The size of the nanopores allows phenazine metabolites to freely diffuse into the interior and access the working electrodes, while the bacteria are excluded. Consequently, highly efficient redox cycling reactions in the NEAs can be accessed by free diffusion unhindered by the presence of bacteria. This strategy yields low limits of detection, i.e. 10.5 and 20.7 nM for PYO and PCN, respectively, values far below single molecule pore occupancy, e.g. at 10.5 nM 〈npore〉∼ 0.082 per nanopore - a limit which reflects the extraordinary signal amplification in the NEAs. Furthermore, experiments that compared results from minimal medium and rich medium show that P. aeruginosa produces the same types of phenazine metabolites even though growth rates and phenazine production patterns differ in these two media. The NEA measurement strategy developed here should be useful as a diagnostic for pathogens generally and for understanding metabolism in clinically important microbial communities.


Assuntos
Nanoporos , Pseudomonas aeruginosa , Eletrodos , Oxirredução , Fenazinas , Pseudomonas aeruginosa/metabolismo , Piocianina
11.
J Chem Phys ; 154(20): 204201, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34241187

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen implicated in both acute and chronic diseases, which resists antibiotic treatment, in part by forming physical and chemical barriers such as biofilms. Here, we explore the use of confocal Raman imaging to characterize the three-dimensional (3D) spatial distribution of alkyl quinolones (AQs) in P. aeruginosa biofilms by reconstructing depth profiles from hyperspectral Raman data. AQs are important to quorum sensing (QS), virulence, and other actions of P. aeruginosa. Three-dimensional distributions of three different AQs (PQS, HQNO, and HHQ) were observed to have a significant depth, suggesting 3D anisotropic shapes-sheet-like rectangular solids for HQNO and extended cylinders for PQS. Similar to observations from 2D imaging studies, spectral features characteristic of AQs (HQNO or PQS) and the amide I vibration from peptide-containing species were found to correlate with the PQS cylinders typically located at the tips of the HQNO rectangular solids. In the QS-deficient mutant lasIrhlI, a small globular component was observed, whose highly localized nature and similarity in size to a P. aeruginosa cell suggest that the feature arises from HHQ localized in the vicinity of the cell from which it was secreted. The difference in the shapes and sizes of the aggregates of the three AQs in wild-type and mutant P. aeruginosa is likely related to the difference in the cellular response to growth conditions, environmental stress, metabolic levels, or other structural and biochemical variations inside biofilms. This study provides a new route to characterizing the 3D structure of biofilms and shows the potential of confocal Raman imaging to elucidate the nature of heterogeneous biofilms in all three spatial dimensions. These capabilities should be applicable as a tool in studies of infectious diseases.


Assuntos
Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Quinolonas/farmacologia , Biofilmes/crescimento & desenvolvimento , Microscopia Confocal , Quinolonas/química , Análise Espectral Raman
12.
Adv Funct Mater ; 30(6)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33828443

RESUMO

Silver nanofilament formation dynamics are reported for an ionic liquid (IL)-filled solid polymer electrolyte prepared by a direct-write process using a conductive atomic force microscope (C-AFM). Filaments are electrochemically formed at hundreds of xy locations on a ~40 nm thick polymer electrolyte, polyethylene glycol diacrylate (PEGDA)/[BMIM]PF6. Although the formation time generally decreases with increasing bias from 0.7 to 3.0 V, an unexpected non-monotonic maximum is observed ~ 2.0 V. At voltages approaching this region of inverted kinetics, IL electric double layers (EDLs) becomes detectable; thus, the increased nanofilament formation time can be attributed to electric field screening which hinders silver electro-migration and deposition. Scanning electron microscopy confirms that nanofilaments formed in this inverted region have significantly more lateral and diffuse features. Time-dependent formation currents reveal two types of nanofilament growth dynamics: abrupt, where the resistance decreases sharply over as little as a few ms, and gradual where it decreases more slowly over hundreds of ms. Whether the resistance change is abrupt or gradual depends on the extent to which the EDL screens the electric field. Tuning the formation time and growth dynamics using an IL opens the range of accessible resistance states, which is useful for neuromorphic applications.

13.
Small ; 16(18): e1907249, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32270930

RESUMO

Understanding water behavior in confined volumes is important in applications ranging from water purification to healthcare devices. Especially relevant are wetting and dewetting phenomena which can be switched by external stimuli, such as light and electric fields. Here, these behaviors are exploited for electrochemical processing by voltage-directed ion transport in nanochannels contained within nanopore arrays in which each nanopore presents three electrodes. The top and middle electrodes (TE and ME) are in direct contact with the nanopore volume, but the bottom electrode (BE) is buried beneath a 70 nm silicon nitride (SiNx ) insulating layer. Electrochemical transistor operation is realized when small, defect-mediated channels are opened in the SiNx . These defect channels exhibit voltage-driven wetting that mediates the mass transport of redox species to/from the BE. When BE is held at a potential maintaining the defect channels in the wetted state, setting the potential of ME at either positive or negative overpotential results in strong electrochemical rectification with rectification factors up to 440. By directing the voltage-induced electrowetting of defect channels, these three-electrode nanopore structures can achieve precise gating and ion/molecule separation, and, as such, may be useful for applications such as water purification and drug delivery.


Assuntos
Eletroumectação , Nanoporos , Eletricidade , Eletrodos , Molhabilidade
14.
J Biol Chem ; 293(24): 9544-9552, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29588364

RESUMO

There is a general lack of understanding about how communities of bacteria respond to exogenous toxins such as antibiotics. Most of our understanding of community-level stress responses comes from the study of stationary biofilm communities. Although several community behaviors and production of specific biomolecules affecting biofilm development and associated behavior have been described for Pseudomonas aeruginosa and other bacteria, we have little appreciation for the production and dispersal of secreted metabolites within the 2D and 3D spaces they occupy as they colonize, spread, and grow on surfaces. Here we specifically studied the phenotypic responses and spatial variability of alkyl quinolones, including the Pseudomonas quinolone signal (PQS) and members of the alkyl hydroxyquinoline (AQNO) subclass, in P. aeruginosa plate-assay swarming communities. We found that PQS production was not a universal signaling response to antibiotics, as tobramycin elicited an alkyl quinolone response, whereas carbenicillin did not. We also found that PQS and AQNO profiles in response to tobramycin were markedly distinct and influenced these swarms on different spatial scales. At some tobramycin exposures, P. aeruginosa swarms produced alkyl quinolones in the range of 150 µm PQS and 400 µm AQNO that accumulated as aggregates. Our collective findings show that the distribution of alkyl quinolones can vary by several orders of magnitude within the same swarming community. More notably, our results suggest that multiple intercellular signals acting on different spatial scales can be triggered by one common cue.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Hidroxiquinolinas/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Quinolonas/metabolismo , Tobramicina/farmacologia , Humanos , Espectrometria de Massas , Viabilidade Microbiana/efeitos dos fármacos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/fisiologia , Análise Espectral Raman
15.
Anal Chem ; 91(7): 4568-4576, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30860812

RESUMO

The attoliter volumes and confinement abilities of zero-dimensional nanopore-electrode arrays (NEAs) hold considerable promise for examining the behavior of single nanoparticles. In this work, we use surface-enhanced Raman scattering (SERS) in tandem with amperometry in order to monitor single Ag Raman-sentinel nanoparticles transported to and captured in single nanopores. To that end, highly ordered solid-state NEAs were fabricated to contain periodic arrays of nanopores, each housing a single recessed Au-ring electrode. These were used to electrostatically capture and trap single silver nanoparticles (AgNPs) functionalized with the electrochemically stable Raman reporter, 1,4-bis(2-methylstyryl)benzene (bis-MSB). Transport and capture of the bis-MSB-tagged AgNPs in the nanopores was followed by simultaneous amperometry and SERS signals characteristic of AgNP oxidation and enhanced Raman scattering by bis-MSB at silver-gold hot spots, respectively. The frequency and magnitude of oxidation-current spikes increased with stepwise increases in DC voltage, and characteristic bis-MSB SERS spectra were observed. Under AC excitation, on the other hand, two distinctly different types of SERS signals were observed, independent of frequency and amplitude: (1) strong, transient (<10 s) spectra and (2) slow (>100 s) monotonically diminishing spectra. We hypothesize that the former behavior results from AgNP aggregates, whereas the latter occurs as a result of multiple incomplete AgNP-oxidation events in succession. These results show that attoliter-volume NEAs are competent for acquiring concurrent SERS spectra and for amperometry of single nanoparticles and that together these measurements can illuminate the collision dynamics of nanoparticles in confined environments.

16.
Langmuir ; 35(21): 7043-7049, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31042392

RESUMO

Pyocyanin (PYO) is one of many toxins secreted by the opportunistic human pathogenic bacterium Pseudomonas aeruginosa. Direct detection of PYO in biofilms is crucial because PYO can provide important information about infection-related virulence mechanisms in P. aeruginosa. Because PYO is both redox-active and Raman-active, we seek to simultaneously acquire both spectroscopic and redox state information about PYO. The combination of surface-enhanced Raman spectroscopy (SERS) and voltammetry is used here to provide insights into the molecular redox behavior of PYO while controlling the SERS and electrochemical (EC) response of PYO with external stimuli, such as pH and applied potential. Furthermore, PYO secretion from biofilms of different P. aeruginosa strains is compared. Both SERS spectra and EC behavior are observed to change with pH, and several pH-dependent bands are identified in the SERS spectra, which can potentially be used to probe the local environment. Comparison of the voltammetric behavior of wild-type and a PYO-deficient mutant unequivocally identifies PYO as a major component of the secretome. Spectroelectrochemical studies of the PYO standard reveal decreasing SERS intensities of PYO bands under reducing conditions. Extending these experiments to pellicle biofilms shows similar behavior with applied potential, and SERS imaging indicates that secreted PYO is localized in regions approximately the size of P. aeruginosa cells. The in situ spectroelectrochemical biofilm characterization approach developed here suggests that EC-SERS monitoring of secreted molecules can be used diagnostically and correlated with the progress of infection.


Assuntos
Biofilmes , Pseudomonas aeruginosa/fisiologia , Piocianina/química , Pseudomonas aeruginosa/química , Piocianina/metabolismo , Análise Espectral Raman
17.
Analyst ; 144(21): 6240-6246, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31538160

RESUMO

Enabled by the proliferation of nanoscale fabrication techniques required to create spatially-repeating, sub-wavelength structures to manipulate the behavior of visible-wavelength radiation, optical metamaterials are of increasing interest. Here we develop and characterize a chemical sensing approach based on electrochemical tuning of the optical response function of large-area, inexpensive nanoaperture metamaterials at visible and near-IR wavelengths. Nanosphere lithography is used to create an ordered array of sub-wavelength apertures in a Au film. The spacing of these apertures is established during fabrication, based on the size of the polystyrene nanospheres. Tunable shifts in the transmission spectrum can be produced post-fabrication by electrodeposition of a dissimilar metal, Ag, using the nanoaperture film as one electrode in a 2-electrode closed bipolar electrochemical (CBE) cell, altering hole size, film thickness, and film composition while maintaining hole spacing dictated by the original pattern. Optical transmission spectra acquired under galvanostatic conditions can be expressed as a linear combination of the initial and final (saturated) spectra, and the resulting response function exhibits a sigmoidal response with respect to the amount of charge (or metal) deposited. This architecture is then used to perform optical coulometry of model analytes in a CBE-based analyte-reporter dual cell device, thus expanding the capability of CBE-based sensors. Increasing the exposed electrode area of the analyte cell increases the response of the device, while modifying the circuit resistance alters the balance between sensitivity and dynamic range. These tunable nanoaperture metamaterials exhibit enhanced sensitivity compared to CBE electrochromic reporter cells to the µM to nM concentration range, suggesting further avenues for development of CBE-based chemical sensors as well as application to inexpensive, point-of-care diagnostic devices.

18.
Anal Chem ; 90(3): 2326-2332, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29260861

RESUMO

The detection of whole-cell Pseudomonas aeruginosa presents an intriguing challenge with direct applications in health care and the prevention of nosocomial infection. To address this problem, a localized surface plasmon resonance (LSPR) based sensing platform was developed to detect whole-cell Pseudomonas aeruginosa strain PAO1 using a surface-confined aptamer as an affinity reagent. Nanosphere lithography (NSL) was used to fabricate a sensor surface containing a hexagonal array of Au nanotriangles. The sensor surface was subsequently modified with biotinylated polyethylene glycol (Bt-PEG) thiol/PEG thiol (1:3), neutravidin, and biotinylated aptamer in a sandwich format. The 1:3 (v/v) ratio of Bt-PEG thiol/PEG thiol was specifically chosen to maximize PAO1 binding while minimizing nonspecific adsorption and steric hindrance. In contrast to prior whole-cell LSPR work, the LSPR wavelength shift was shown to be linearly related to bacterial concentration over the range of 10-103 cfu mL-1. This LSPR sensing platform is rapid (∼3 h for detection), sensitive (down to the level of a single bacterium), selective for detection of Pseudomonas strain PAO1 over other strains, and exhibits a clinically relevant dynamic range and excellent shelf life (≥2 months) when stored at ambient conditions. This versatile LSPR sensing platform should be extendable to a wide range of supermolecular analytes, including both bacteria and viruses, by switching affinity reagents, and it has potential to be used in point-of-care and field-based applications.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Pseudomonas aeruginosa/isolamento & purificação , Ressonância de Plasmônio de Superfície/métodos , Avidina/química , Sequência de Bases , Biotina/química , Ouro/química , Limite de Detecção , Nanoestruturas/química , Pseudomonas aeruginosa/química
19.
Anal Chem ; 90(9): 5654-5663, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29623707

RESUMO

After several decades of widespread use for mapping elemental ions and small molecular fragments in surface science, secondary ion mass spectrometry (SIMS) has emerged as a powerful analytical tool for molecular imaging in biology. Biomolecular SIMS imaging has primarily been used as a qualitative technique; although the distribution of a single analyte can be accurately determined, it is difficult to map the absolute quantity of a compound or even to compare the relative abundance of one molecular species to that of another. We describe a method for quantitative SIMS imaging of small molecules in agar-based microbial communities. The microbes are cultivated on a thin film of agar, dried under nitrogen, and imaged directly with SIMS. By use of optical microscopy, we show that the area of the agar is reduced by 26 ± 2% (standard deviation) during dehydration, but the overall biofilm morphology and analyte distribution are largely retained. We detail a quantitative imaging methodology, in which the ion intensity of each analyte is (1) normalized to an external quadratic regression curve, (2) corrected for isomeric interference, and (3) filtered for sample-specific noise and lower and upper limits of quantitation. The end result is a two-dimensional surface density image for each analyte. The sample preparation and quantitation methods are validated by quantitatively imaging four alkyl-quinolone and alkyl-quinoline N-oxide signaling molecules (including Pseudomonas quinolone signal) in Pseudomonas aeruginosa colony biofilms. We show that the relative surface densities of the target biomolecules are substantially different from values inferred through direct intensity comparison and that the developed methodologies can be used to quantitatively compare as many ions as there are available standards.


Assuntos
Ágar/química , Imagem Molecular , Pseudomonas aeruginosa/química , Quinolinas/análise , Espectrometria de Massa de Íon Secundário , Biofilmes , Microbiota , Microscopia Confocal , Microscopia de Fluorescência , Tamanho da Partícula
20.
Small ; 14(18): e1703248, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29377558

RESUMO

Single nanoparticle analysis can reveal how particle-to-particle heterogeneity affects ensemble properties derived from traditional bulk measurements. High-bandwidth, low noise electrochemical measurements are needed to examine the fast heterogeneous electron-transfer behavior of single nanoparticles with sufficient fidelity to resolve the behavior of individual nanoparticles. Herein, nanopore electrode arrays (NEAs) are fabricated in which each pore supports two vertically spaced, individually addressable electrodes. The top ring electrode serves as a particle gate to control the transport of silver nanoparticles (AgNPs) within individual attoliter volume NEAs nanopores, as shown by redox collisions of AgNPs collisions at the bottom disk electrode. The AgNP-nanoporeis system has wide-ranging technological applications as well as fundamental interest, since the transport of AgNPs within the NEA mimics the transport of ions through cell membranes via voltage-gated ion channels. A voltage threshold is observed above which AgNPs are able to access the bottom electrode of the NEAs, i.e., a minimum potential at the gate electrode is required to switch between few and many observed collision events on the collector electrode. It is further shown that this threshold voltage is strongly dependent on the applied voltage at both electrodes as well as the size of AgNPs, as shown both experimentally and through finite-element modeling. Overall, this study provides a precise method of monitoring nanoparticle transport and in situ redox reactions within nanoconfined spaces at the single particle level.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa