Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Headache Pain ; 24(1): 42, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37072694

RESUMO

BACKGROUND: Migraine is a severely debilitating disorder that affects millions of people worldwide. Studies have indicated that activation of protease-activated receptor-2 (PAR2) in the dura mater causes headache responses in preclinical models. It is also well known that vasodilators such as nitric oxide (NO) donors can trigger migraine attacks in migraine patients but not controls. In the current study we examined whether activation of PAR2 in the dura causes priming to the NO donor glyceryl trinitrate (GTN). METHODS: A preclinical behavioral model of migraine was used where stimuli (PAR2 agonists: 2at-LIGRL-NH2 (2AT) or neutrophil elastase (NE); and IL-6) were applied to the mouse dura through an injection made at the intersection of the lamdoidal and sagittal sutures on the skull. Following dural injection, periorbital von Frey thresholds and facial grimace responses were measured until their return to baseline. GTN was then given by intraperitoneal injection and periorbital hypersensitivity and facial grimace responses observed until they returned to baseline. RESULTS: We found that application of the selective PAR2 agonist 2at-LIGRL-NH2 (2AT) onto the dura causes headache-related behavioral responses in WT but not PAR2-/- mice with no differences between sexes. Additionally, dural PAR2 activation with 2AT caused priming to GTN (1 mg/kg) at 14 days after primary dural stimulation. PAR2-/- mice showed no priming to GTN. We also tested behavioral responses to the endogenous protease neutrophil elastase, which can cleave and activate PAR2. Dural neutrophil elastase caused both acute responses and priming to GTN in WT but not PAR2-/- mice. Finally, we show that dural IL-6 causes acute responses and priming to GTN that is identical in WT and PAR2-/- mice, indicating that IL-6 does not act through PAR2 in this model. CONCLUSIONS: These results indicate that PAR2 activation in the meninges can cause acute headache behavioral responses and priming to an NO donor, and support further exploration of PAR2 as a novel therapeutic target for migraine.


Assuntos
Transtornos de Enxaqueca , Nitroglicerina , Camundongos , Animais , Nitroglicerina/farmacologia , Elastase de Leucócito , Receptor PAR-2 , Interleucina-6 , Transtornos de Enxaqueca/induzido quimicamente , Dura-Máter , Cefaleia , Modelos Animais de Doenças
2.
Biochem Biophys Res Commun ; 591: 13-19, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34990903

RESUMO

Inhalation of the fungus Alternaria alternata is associated with an increased risk of allergic asthma development and exacerbations. Recent work in acute exposure animal models suggests that A. alternata-induced asthma symptoms, which include inflammation, mucus overproduction and airway hyperresponsiveness, are due to A. alternata proteases that act via protease-activated receptor-2 (PAR2). However, because other active components present in A. alternata may be contributing to asthma pathophysiology through alternative signaling, the specific role PAR2 plays in asthma initiation and maintenance remains undefined. Airway epithelial cells provide the first encounter with A. alternata and are thought to play an important role in initiating the physiologic response. To better understand the role for PAR2 airway epithelial signaling we created a PAR2-deficient human bronchial epithelial cell line (16HBEPAR-/-) from a model bronchial parental line (16HBE14o-). Comparison of in vitro physiologic responses in these cell lines demonstrated a complete loss of PAR2 agonist (2at-LIGRL-NH2) response and significantly attenuated protease (trypsin and elastase) and A. alternata responses in the 16HBEPAR-/- line. Apical application of A. alternata to 16HBE14o- and 16HBEPAR2-/- grown at air-liquid interface demonstrated rapid, PAR2-dependent and independent, inflammatory cytokine, chemokine and growth factor basolateral release. In conclusion, the novel human PAR2-deficient cell line allows for direct in vitro examination of the role(s) for PAR2 in allergen challenge with polarized human airway epithelial cells.


Assuntos
Alternaria/fisiologia , Brônquios/patologia , Células Epiteliais/microbiologia , Inflamação/patologia , Receptor PAR-2/metabolismo , Transdução de Sinais , Sequência de Bases , Sistemas CRISPR-Cas/genética , Linhagem Celular , Células Epiteliais/metabolismo , Humanos
3.
J Immunol ; 203(5): 1122-1130, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31350355

RESUMO

Surfactant protein-A (SP-A) is an important mediator of pulmonary immunity. A specific genetic variation in SP-A2, corresponding to a glutamine (Q) to lysine (K) amino acid substitution at position 223 of the lectin domain, was shown to alter the ability of SP-A to inhibit eosinophil degranulation. Because a large subgroup of asthmatics have associated eosinophilia, often accompanied by inflammation associated with delayed clearance, our goal was to define how SP-A mediates eosinophil resolution in allergic airways and whether genetic variation affects this activity. Wild-type, SP-A knockout (SP-A KO) and humanized (SP-A2 223Q/Q, SP-A2 223K/K) C57BL/6 mice were challenged in an allergic OVA model, and parameters of inflammation were examined. Peripheral blood eosinophils were isolated to assess the effect of SP-A genetic variation on apoptosis and chemotaxis. Five days postchallenge, SP-A KO and humanized SP-A2 223K/K mice had persistent eosinophilia in bronchoalveolar lavage fluid compared with wild-type and SP-A2 223Q/Q mice, suggesting an impairment in eosinophil resolution. In vitro, human SP-A containing either the 223Q or the 223K allele was chemoattractant for eosinophils whereas only 223Q resulted in decreased eosinophil viability. Our results suggest that SP-A aids in the resolution of allergic airway inflammation by promoting eosinophil clearance from lung tissue through chemotaxis, independent of SP-A2 Q223K, and by inducing apoptosis of eosinophils, which is altered by the polymorphism.


Assuntos
Asma/complicações , Eosinofilia/fisiopatologia , Proteína A Associada a Surfactante Pulmonar/fisiologia , Animais , Apoptose/efeitos dos fármacos , Quimiocina CCL11/análise , Variação Genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteína A Associada a Surfactante Pulmonar/genética , Proteína A Associada a Surfactante Pulmonar/farmacologia
4.
Int J Toxicol ; 39(3): 218-231, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32228215

RESUMO

The semiconductor manufacturing sector plans to introduce III/V film structures (eg, gallium arsenide (GaAs), indium arsenide (InAs) onto silicon wafers due to their high electron mobility and low power consumption. Aqueous solutions generated during chemical and mechanical planarization of silicon wafers can contain a mixture of metal oxide nanoparticles (NPs) and soluble indium, gallium, and arsenic. In this work, the cytotoxicity induced by Ga- and In-based NPs (GaAs, InAs, Ga2O3, In2O3) and soluble III-V salts on human bronchial epithelial cells (16HBE14o-) was evaluated using a cell impedance real-time cell analysis (RTCA) system. The RTCA system provided inhibition data at different concentrations for multiple time points, for example, GaAs (25 mg/L) caused 60% inhibition after 8 hours of exposure and 100% growth inhibition after 24 hours. Direct testing of As(III) and As(V) demonstrated significant cytotoxicity with 50% growth inhibition concentrations after 16-hour exposure (IC50) of 2.4 and 4.5 mg/L, respectively. Cell signaling with rapid rise and decrease in signal was unique to arsenic cytotoxicity, a precursor of strong cytotoxicity over the longer term. In contrast with arsenic, soluble gallium(III) and indium(III) were less toxic. Whereas the oxide NPs caused low cytotoxicity, the arsenide compounds were highly inhibitory (IC50 of GaAs and InAs = 6.2 and 68 mg/L, respectively). Dissolution experiments over 7 days revealed that arsenic was fully leached from GaAs NPs, whereas only 10% of the arsenic was leached out of InAs NPs. These results indicate that the cytotoxicity of GaAs and InAs NPs is largely due to the dissolution of toxic arsenic species.


Assuntos
Células Epiteliais/efeitos dos fármacos , Gálio/toxicidade , Índio/toxicidade , Nanopartículas Metálicas/toxicidade , Óxidos/toxicidade , Arsenicais/química , Brônquios/citologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Impedância Elétrica , Endocitose , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Gálio/química , Humanos , Índio/química , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão
5.
Am J Physiol Cell Physiol ; 317(4): C825-C842, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31365296

RESUMO

Connexin (Cx) mimetic peptides derived from extracellular loop II sequences (e.g., Gap27: SRPTEKTIFII; Peptide5: VDCFLSRPTEKT) have been used as reversible, Cx-specific blockers of hemichannel (HCh) and gap junction channel (GJCh) function. These blockers typically require high concentrations (~5 µM, <1 h for HCh; ~100 µM, >1 h for GJCh) to achieve inhibition. We have shown that addition of a hexadecyl (Hdc) lipid tail to the conserved SRPTEKT peptide sequence (SRPTEKT-Hdc) results in a novel, highly efficacious, and potent inhibitor of mechanically induced Ca2+-wave propagation (IC50 64.8 pM) and HCh-mediated dye uptake (IC50 45.0 pM) in Madin-Darby canine kidney cells expressing rat Cx43 (MDCK43). The lack of similar effect on dye coupling (NBD-MTMA) suggested channel conformation-specific inhibition. Here we report that SRPTEKT-Hdc inhibition of Ca2+-wave propagation, dye coupling, and dye uptake depended on the functional configuration of Cx43 as determined by phosphorylation at serine 368 (S368). Ca2+-wave propagation was enhanced in MDCK cells expressing single-site mutants of Cx43 that mimicked (MDCK43-S368D) or favored (MDCK43-S365A) phosphorylation at S368. Furthermore, SRPTEKT-Hdc potently inhibited GJCh-mediated Ca2+-wave propagation (IC50 230.4 pM), dye coupling, and HCh-mediated dye uptake in MDCK43-S368D and -S365A cells. In contrast, Ca2+-wave propagation, dye coupling, and dye uptake were largely unaffected (IC50 12.3 µM) by SRPTEKT-Hdc in MDCK43-S368A and -S365D cells, mutations that mimic or favor dephosphorylation at S368. Together, these data indicate that SRPTEKT-Hdc is a potent inhibitor of physiological Ca2+-wave signaling mediated specifically by the pS368 phosphorylated form of Cx43.


Assuntos
Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Canais Iônicos/metabolismo , Peptídeos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Conexinas/metabolismo , Cães , Células Madin Darby de Rim Canino , Oligopeptídeos , Isoformas de Proteínas/metabolismo
6.
Toxicol Appl Pharmacol ; 365: 124-132, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30641074

RESUMO

Exposure to mine tailings dust from active and abandoned mining operations may be a very significant health hazard, especially to sensitive populations living in arid and semi-arid climates like the desert southwest of the US. It is anticipated that early life exposures during sensitive times of development can lead to adult disease. However, very few studies have investigated the effects of inhalation exposure to real world dusts during lung development. Using a mouse model, we have examined the effect(s) of inhalation of real world mine tailing dusts under three separate conditions: (1) Exposure only during in utero development (exposure of the pregnant moms) (2) exposure only after birth and (3) exposures that occurred continuously during in utero development, through gestation and birth until the mice reached adulthood (28 days old). We found that the most significant changes in lung structure and function were observed in male mice when exposure occurred continuously throughout development. These changes included increased airway hyper-reactivity, increased expression of epithelial to mesenchymal (EMT) transition protein markers and increased expression of cytokines related to eosinophils. The data also indicate that in utero exposures through maternal inhalation can prime the lung of male mice for more severe responses to subsequent postnatal exposures. This may be due to epigenetic alterations in gene regulation, immune response, molecular signaling, and growth factors involved in lung development that may make the neonatal lung more susceptible to continued dust exposure.


Assuntos
Poluentes Atmosféricos/toxicidade , Poeira , Exposição por Inalação/efeitos adversos , Pneumopatias/induzido quimicamente , Pulmão/efeitos dos fármacos , Mineração , Fatores Etários , Animais , Hiper-Reatividade Brônquica/induzido quimicamente , Hiper-Reatividade Brônquica/fisiopatologia , Citocinas/metabolismo , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Eosinófilos/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Idade Gestacional , Pulmão/metabolismo , Pulmão/patologia , Pulmão/fisiopatologia , Pneumopatias/metabolismo , Pneumopatias/patologia , Pneumopatias/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Medição de Risco
7.
Cephalalgia ; 39(1): 111-122, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29848111

RESUMO

BACKGROUND: Pain is the most debilitating symptom of migraine. The cause of migraine pain likely requires activation of meningeal nociceptors. Mast cell degranulation, with subsequent meningeal nociceptor activation, has been implicated in migraine pathophysiology. Degranulating mast cells release serine proteases that can cleave and activate protease activated receptors. The purpose of these studies was to investigate whether protease activated receptor 2 is a potential generator of nociceptive input from the meninges by using selective pharmacological agents and knockout mice. METHODS: Ratiometric Ca++ imaging was performed on primary trigeminal and dural cell cultures after application of 2at-LIGRL-NH2, a specific protease activated receptor 2 agonist. Cutaneous hypersensitivity and facial grimace was measured in wild-type and protease activated receptor 2-/- mice after dural application of 2at-LIGRL-NH2 or compound 48-80, a mast cell degranulator. Behavioral experiments were also conducted in mice after dural application of 2at-LIGRL-NH2 (2AT) in the presence of either C391, a selective protease activated receptor 2 antagonist, or sumatriptan. RESULTS: 2at-LIGRL-NH2 evoked Ca2+ signaling in mouse trigeminal neurons, dural fibroblasts and in meningeal afferents. Dural application of 2at-LIGRL-NH2 or 48-80 caused dose-dependent grimace behavior and mechanical allodynia that were attenuated by either local or systemic application of C391 as well as in protease activated receptor 2-/- mice. Nociceptive behavior after dural injection of 2at-LIGRL-NH2 was also attenuated by sumatriptan. CONCLUSIONS: Functional protease activated receptor 2 receptors are expressed on both dural afferents and fibroblasts and activation of dural protease activated receptor 2 produces migraine-like behavioral responses. Protease activated receptor 2 may link resident immune cells to meningeal nociceptor activation, driving migraine-like pain and implicating protease activated receptor 2 as a therapeutic target for migraine in humans.


Assuntos
Meninges/imunologia , Transtornos de Enxaqueca/metabolismo , Dor/metabolismo , Receptor PAR-2/metabolismo , Animais , Degranulação Celular/imunologia , Masculino , Mastócitos/imunologia , Meninges/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Transtornos de Enxaqueca/imunologia , Neurônios/metabolismo , Dor/imunologia
8.
J Neurosci ; 37(31): 7481-7499, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28674170

RESUMO

Injury-induced sensitization of nociceptors contributes to pain states and the development of chronic pain. Inhibiting activity-dependent mRNA translation through mechanistic target of rapamycin and mitogen-activated protein kinase (MAPK) pathways blocks the development of nociceptor sensitization. These pathways convergently signal to the eukaryotic translation initiation factor (eIF) 4F complex to regulate the sensitization of nociceptors, but the details of this process are ill defined. Here we investigated the hypothesis that phosphorylation of the 5' cap-binding protein eIF4E by its specific kinase MAPK interacting kinases (MNKs) 1/2 is a key factor in nociceptor sensitization and the development of chronic pain. Phosphorylation of ser209 on eIF4E regulates the translation of a subset of mRNAs. We show that pronociceptive and inflammatory factors, such as nerve growth factor (NGF), interleukin-6 (IL-6), and carrageenan, produce decreased mechanical and thermal hypersensitivity, decreased affective pain behaviors, and strongly reduced hyperalgesic priming in mice lacking eIF4E phosphorylation (eIF4ES209A ). Tests were done in both sexes, and no sex differences were found. Moreover, in patch-clamp electrophysiology and Ca2+ imaging experiments on dorsal root ganglion neurons, NGF- and IL-6-induced increases in excitability were attenuated in neurons from eIF4ES209A mice. These effects were recapitulated in Mnk1/2-/- mice and with the MNK1/2 inhibitor cercosporamide. We also find that cold hypersensitivity induced by peripheral nerve injury is reduced in eIF4ES209A and Mnk1/2-/- mice and following cercosporamide treatment. Our findings demonstrate that the MNK1/2-eIF4E signaling axis is an important contributing factor to mechanisms of nociceptor plasticity and the development of chronic pain.SIGNIFICANCE STATEMENT Chronic pain is a debilitating disease affecting approximately one in three Americans. Chronic pain is thought to be driven by changes in the excitability of peripheral nociceptive neurons, but the precise mechanisms controlling these changes are not elucidated. Emerging evidence demonstrates that mRNA translation regulation pathways are key factors in changes in nociceptor excitability. Our work demonstrates that a single phosphorylation site on the 5' cap-binding protein eIF4E is a critical mechanism for changes in nociceptor excitability that drive the development of chronic pain. We reveal a new mechanistic target for the development of a chronic pain state and propose that targeting the upstream kinase, MAPK interacting kinase 1/2, could be used as a therapeutic approach for chronic pain.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Dor Crônica/fisiopatologia , Fator de Iniciação 4E em Eucariotos/metabolismo , Gânglios Espinais/fisiopatologia , Hiperalgesia/fisiopatologia , Plasticidade Neuronal , Nociceptividade , Animais , Dor Crônica/etiologia , ATPases Transportadoras de Cobre , Progressão da Doença , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dor Nociceptiva/etiologia , Dor Nociceptiva/fisiopatologia , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais
9.
Am J Physiol Cell Physiol ; 315(2): C141-C154, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29631365

RESUMO

Connexin (Cx) mimetic peptides (e.g., Gap27: SRPTEKTIFII; Peptide5: VDCFLSRPTEKT) reversibly inhibit hemichannel (HCh) and gap junction channel (GJCh) function in a concentration- and time-dependent manner (HCh: ~5 µM, <1 h; GJCh: ~100 µM, > 1 h). We hypothesized that addition of a hexadecyl tail to SRPTEKT (SRPTEKT- Hdc) would improve its ability to concentrate in the plasma membrane and consequently increase its inhibitory efficacy. We show that SRPTEKT- Hdc inhibited intercellular Ca2+-wave propagation in Cx43-expressing MDCK and rabbit tracheal epithelial cells in a time (61-75 min)- and concentration (IC50: 66 pM)-dependent manner, a concentration efficacy five orders of magnitude lower than observed for the nonlipidated Gap27. HCh-mediated dye uptake was inhibited by SRPTEKT- Hdc with similar efficacy. Following peptide washout, HCh-mediated dye uptake was restored to control levels, whereas Ca2+-wave propagation was only partially restored. Scrambled and reverse sequence lipidated peptides had no detectable inhibitory effect on Ca2+-wave propagation or dye uptake. Cx43 expression was unchanged by SRPTEKT- Hdc incubation; however, Triton-insoluble Cx43 was reduced by SRPTEKT- Hdc exposure and reversed following washout. In summary, our results show that SRPTEKT- Hdc blocked HCh function and intercellular Ca2+ signaling at concentrations that minimally affected dye coupling. Selective inhibition of intercellular Ca2+ signaling, likely indicative of channel conformation-specific SRPTEKT- Hdc binding, could contribute significantly to the protective effects of these mimetic peptides in settings of injury. Our data also demonstrate that lipidation represents a paradigm for development of highly potent, efficacious, and selective mimetic peptide inhibitors of hemichannel and gap junction channel-mediated signaling.


Assuntos
Cálcio/metabolismo , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Peptídeos/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Linhagem Celular , Conexina 43/metabolismo , Cães , Células Epiteliais/metabolismo , Canais Iônicos/metabolismo , Células Madin Darby de Rim Canino , Oligopeptídeos , Coelhos
10.
Am J Physiol Lung Cell Mol Physiol ; 315(6): L1042-L1057, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30335499

RESUMO

Alternaria alternata is a fungal allergen associated with severe asthma and asthma exacerbations. Similarly to other asthma-associated allergens, Alternaria secretes a serine-like trypsin protease(s) that is thought to act through the G protein-coupled receptor protease-activated receptor-2 (PAR2) to induce asthma symptoms. However, specific mechanisms underlying Alternaria-induced PAR2 activation and signaling remain ill-defined. We sought to determine whether Alternaria-induced PAR2 signaling contributed to asthma symptoms via a PAR2/ß-arrestin signaling axis, identify the protease activity responsible for PAR2 signaling, and determine whether protease activity was sufficient for Alternaria-induced asthma symptoms in animal models. We initially used in vitro models to demonstrate Alternaria-induced PAR2/ß-arrestin-2 signaling. Alternaria filtrates were then used to sensitize and challenge wild-type, PAR2-/- and ß-arrestin-2-/- mice in vivo. Intranasal administration of Alternaria filtrate resulted in a protease-dependent increase of airway inflammation and mucin production in wild-type but not PAR2-/- or ß-arrestin-2-/- mice. Protease was isolated from Alternaria preparations, and select in vitro and in vivo experiments were repeated to evaluate sufficiency of the isolated Alternaria protease to induce asthma phenotype. Administration of a single isolated serine protease from Alternaria, Alternaria alkaline serine protease (AASP), was sufficient to fully activate PAR2 signaling and induce ß-arrestin-2-/--dependent eosinophil and lymphocyte recruitment in vivo. In conclusion, Alternaria filtrates induce airway inflammation and mucus hyperplasia largely via AASP using the PAR2/ß-arrestin signaling axis. Thus, ß-arrestin-biased PAR2 antagonists represent novel therapeutic targets for treating aeroallergen-induced asthma.


Assuntos
Inflamação/metabolismo , Receptor PAR-2/metabolismo , Serina Proteases/metabolismo , Transdução de Sinais/fisiologia , beta-Arrestina 2/metabolismo , Alérgenos/metabolismo , Animais , Asma/metabolismo , Proteínas de Bactérias/metabolismo , Endopeptidases/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Serina/metabolismo , Serina Endopeptidases/metabolismo
11.
Environ Res ; 164: 452-458, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29574255

RESUMO

The production and application of engineered nanoparticles (NPs) are increasing in demand with the rapid development of nanotechnology. However, there are concerns that some of these novel materials could lead to emerging environmental and health problems. Some NPs are able to facilitate the transport of contaminants into cells/organisms via a "Trojan Horse" effect which enhances the toxicity of the adsorbed materials. In this work, we evaluated the toxicity of arsenite (As(III)) adsorbed onto cerium dioxide (CeO2) NPs to human bronchial epithelial cells (16HBE14o-) using the xCELLigence real time cell analyzing system (RTCA). Application of 0.5 mg/L As(III) resulted in 81.3% reduction of cell index (CI, an RTCA measure of cell toxicity) over 48 h when compared to control cells exposed to medium lacking As(III). However, when the cells were exposed to 0.5 mg/L As(III) in the presence of CeO2 NPs (250 mg/L), the CI was only reduced by 12.9% compared to the control. The CeO2 NPs had a high capacity for As(III) adsorption (20.2 mg/g CeO2) in the bioassay medium, effectively reducing dissolved As(III) in the aqueous solution and resulting in reduced toxicity. Transmission electron microscopy was used to study the transport of CeO2 NPs into 16HBE14o- cells. NP uptake via engulfment was observed and the internalized NPs accumulated in vesicles. The results demonstrate that dissolved As(III) in the aqueous solution was the decisive factor controlling As(III) toxicity of 16HBE14o- cells, and that CeO2 NPs effectively reduced available As(III) through adsorption. These data emphasize the evaluation of mixtures when assaying toxicity.


Assuntos
Arsenitos , Cério/química , Células Epiteliais/citologia , Nanopartículas Metálicas , Nanopartículas , Arsenitos/toxicidade , Humanos , Nanopartículas Metálicas/química
13.
Respir Res ; 17(1): 57, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27184162

RESUMO

BACKGROUND: The potential for adverse respiratory effects following exposure to electronic (e-) cigarette liquid (e-liquid) flavorings remains largely unexplored. Given the multitude of flavor permutations on the market, identification of those flavor constituents that negatively impact the respiratory tract is a daunting task. In this study we examined the impact of common e-liquid flavoring chemicals on the airway epithelium, the cellular monolayer that provides the first line of defense against inhaled particulates, pathogens, and toxicants. METHODS: We used the xCELLigence real-time cell analyzer (RTCA) as a primary high-capacity screening tool to assess cytotoxicity thresholds and physiological effects of common e-liquid flavoring chemicals on immortalized human bronchial epithelial cells (16HBE14o-). The RTCA was used secondarily to assess the capability of 16HBE14o- cells to respond to cellular signaling agonists following a 24 h exposure to select flavoring chemicals. Finally, we conducted biophysical measurements of well-differentiated primary mouse tracheal epithelial (MTE) cells with an Ussing chamber to measure the effects of e-cigarette flavoring constituents on barrier function and ion conductance. RESULTS: In our high-capacity screens five of the seven flavoring chemicals displayed changes in cellular impedance consistent with cell death at concentrations found in e-liquid. Vanillin and the chocolate flavoring 2,5-dimethylpyrazine caused alterations in cellular physiology indicative of a cellular signaling event. At subcytotoxic levels, 24 h exposure to 2,5-dimethylpyrazine compromised the ability of airway epithelial cells to respond to signaling agonists important in salt and water balance at the airway surface. Biophysical measurements of 2,5-dimethylpyrazine on primary MTE cells revealed alterations in ion conductance consistent with an efflux at the apical airway surface that was accompanied by a transient loss in transepithelial resistance. Mechanistic studies confirmed that the increases in ion conductance evoked by 2,5-dimethylpyrazine were largely attributed to a protein kinase A-dependent (PKA) activation of the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel. CONCLUSIONS: Data from our high-capacity screening assays demonstrates that individual e-cigarette liquid flavoring chemicals vary in their cytotoxicity profiles and that some constituents evoke a cellular physiological response on their own independent of cell death. The activation of CFTR by 2,5-dimethylpyrazine may have detrimental consequences for airway surface liquid homeostasis in individuals that use e-cigarettes habitually.


Assuntos
Brônquios/efeitos dos fármacos , Chocolate , Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/efeitos dos fármacos , Aromatizantes/toxicidade , Pirazinas/toxicidade , Vaping/efeitos adversos , Animais , Brônquios/metabolismo , Brônquios/patologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Relação Dose-Resposta a Droga , Condutividade Elétrica , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Ensaios de Triagem em Larga Escala , Humanos , Camundongos Endogâmicos C57BL , Permeabilidade , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
14.
Am J Physiol Cell Physiol ; 307(8): C718-26, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25143347

RESUMO

The airway epithelium provides a barrier that separates inhaled air and its various particulates from the underlying tissues. It provides key physiological functions in both sensing the environment and initiating appropriate innate immune defenses to protect the lung. Protease-activated receptor-2 (PAR2) is expressed both apically and basolaterally throughout the airway epithelium. One consequence of basolateral PAR2 activation is the rapid, Ca(2+)-dependent ion flux that favors secretion in the normally absorptive airway epithelium. However, roles for apically expressed PAR2 activation have not been demonstrated, in part due to the lack of specific, high-potency PAR2 ligands. In the present study, we used the newly developed PAR2 ligand 2at-LIGRLO(PEG3-Pam)-NH2 in combination with well-differentiated, primary cultured airway epithelial cells from wild-type and PAR2 (-/-) mice to examine the physiological role of PAR2 in the conducting airway after apical activation. Using digital imaging microscopy of intracellular Ca(2+) concentration changes, we verified ligand potency on PAR2 in primary cultured airway cells. Examination of airway epithelial tissue in an Ussing chamber showed that apical activation of PAR2 by 2at-LIGRLO(PEG3-Pam)-NH2 resulted in a transient decrease in transepithelial resistance that was due to increased apical ion efflux. We determined pharmacologically that this increase in ion conductance was through Ca(2+)-activated Cl(-) and large-conductance K(+) channels that were blocked with a Ca(2+)-activated Cl(-) channel inhibitor and clotrimazole, respectively. Stimulation of Cl(-) efflux via PAR2 activation at the airway epithelial surface can increase airway surface liquid that would aid in clearing the airway of noxious inhaled agents.


Assuntos
Antiasmáticos/farmacologia , Canais de Cloreto/metabolismo , Palmitatos/farmacologia , Canais de Potássio Cálcio-Ativados/metabolismo , Receptor PAR-2/agonistas , Animais , Sinalização do Cálcio , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Ativação do Canal Iônico , Potenciais da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Ornitina/análogos & derivados , Ornitina/farmacologia , Receptor PAR-2/metabolismo , Mucosa Respiratória/citologia , Traqueia/citologia
15.
FASEB J ; 27(4): 1498-510, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23292071

RESUMO

Protease-activated receptor-2 (PAR2) is a G-protein coupled receptor (GPCR) associated with a variety of pathologies. However, the therapeutic potential of PAR2 is limited by a lack of potent and specific ligands. Following proteolytic cleavage, PAR2 is activated through a tethered ligand. Hence, we reasoned that lipidation of peptidomimetic ligands could promote membrane targeting and thus significantly improve potency and constructed a series of synthetic tethered ligands (STLs). STLs contained a peptidomimetic PAR2 agonist (2-aminothiazol-4-yl-LIGRL-NH2) bound to a palmitoyl group (Pam) via polyethylene glycol (PEG) linkers. In a high-throughput physiological assay, these STL agonists displayed EC50 values as low as 1.47 nM, representing a ∼200 fold improvement over the untethered parent ligand. Similarly, these STL agonists were potent activators of signaling pathways associated with PAR2: EC50 for Ca(2+) response as low as 3.95 nM; EC50 for MAPK response as low as 9.49 nM. Moreover, STLs demonstrated significant improvement in potency in vivo, evoking mechanical allodynia with an EC50 of 14.4 pmol. STLs failed to elicit responses in PAR2(-/-) cells at agonist concentrations of >300-fold their EC50 values. Our results demonstrate that the STL approach is a powerful tool for increasing ligand potency at PAR2 and represent opportunities for drug development at other protease activated receptors and across GPCRs.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Palmitatos/farmacologia , Peptidomiméticos/farmacologia , Receptor PAR-2/agonistas , Cálcio/metabolismo , Linhagem Celular/efeitos dos fármacos , Humanos , Hiperalgesia/tratamento farmacológico , Ligantes , Ornitina/análogos & derivados , Ornitina/farmacologia , Relação Estrutura-Atividade
16.
J Pain ; 24(11): 1980-1993, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37315729

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a common, dose-limiting side effect of cancer therapy. Protease-activated receptor 2 (PAR2) is implicated in a variety of pathologies, including CIPN. In this study, we demonstrate the role of PAR2 expressed in sensory neurons in a paclitaxel (PTX)-induced model of CIPN in mice. PAR2 knockout/wildtype (WT) mice and mice with PAR2 ablated in sensory neurons were treated with PTX administered via intraperitoneal injection. In vivo behavioral studies were done in mice using von Frey filaments and the Mouse Grimace Scale. We then examined immunohistochemical staining of dorsal root ganglion (DRG) and hind paw skin samples from CIPN mice to measure satellite cell gliosis and intra-epidermal nerve fiber (IENF) density. The pharmacological reversal of CIPN pain was tested with the PAR2 antagonist C781. Mechanical allodynia caused by PTX treatment was alleviated in PAR2 knockout mice of both sexes. In the PAR2 sensory neuronal conditional knockout (cKO) mice, both mechanical allodynia and facial grimacing were attenuated in mice of both sexes. In the DRG of the PTX-treated PAR2 cKO mice, satellite glial cell activation was reduced compared to control mice. IENF density analysis of the skin showed that the PTX-treated control mice had a reduction in nerve fiber density while the PAR2 cKO mice had a comparable skin innervation as the vehicle-treated animals. Similar results were seen with satellite cell gliosis in the DRG, where gliosis induced by PTX was absent in PAR cKO mice. Finally, C781 was able to transiently reverse established PTX-evoked mechanical allodynia. PERSPECTIVE: Our work demonstrates that PAR2 expressed in sensory neurons plays a key role in PTX-induced mechanical allodynia, spontaneous pain, and signs of neuropathy, suggesting PAR2 as a possible therapeutic target in multiple aspects of PTX CIPN.


Assuntos
Paclitaxel , Doenças do Sistema Nervoso Periférico , Masculino , Feminino , Camundongos , Animais , Paclitaxel/efeitos adversos , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Receptor PAR-2/genética , Receptor PAR-2/uso terapêutico , Gliose/induzido quimicamente , Gliose/complicações , Gliose/patologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Dor/complicações , Células Receptoras Sensoriais , Camundongos Knockout , Gânglios Espinais
17.
J Pain ; 24(4): 605-616, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36417966

RESUMO

Given the limited options and often harmful side effects of current analgesics and the suffering caused by the opioid crisis, new classes of pain therapeutics are needed. Protease-activated receptors (PARs), particularly PAR2, are implicated in a variety of pathologies, including pain. Since the discovery of the role of PAR2 in pain, development of potent and specific antagonists has been slow. In this study, we describe the in vivo characterization of a novel small molecule/peptidomimetic hybrid compound, C781, as a ß-arrestin-biased PAR2 antagonist. In vivo behavioral studies were done in mice using von Frey filaments and the Mouse Grimace Scale. Pharmacokinetic studies were done to assess pharmacokinetic/pharmacodynamic relationship in vivo. We used both prevention and reversal paradigms with protease treatment to determine whether C781 could attenuate protease-evoked pain. C781 effectively prevented and reversed mechanical and spontaneous nociceptive behaviors in response to small molecule PAR2 agonists, mast cell activators, and neutrophil elastase. The ED50 of C781 (intraperitoneal dosing) for inhibition of PAR2 agonist (20.9 ng 2-AT)-evoked nociception was 6.3 mg/kg. C781 was not efficacious in the carrageenan inflammation model. Pharmacokinetic studies indicated limited long-term systemic bioavailability for C781 suggesting that optimizing pharmacokinetic properties could improve in vivo efficacy. Our work demonstrates in vivo efficacy of a biased PAR2 antagonist that selectively inhibits ß-arrestin/MAPK signaling downstream of PAR2. Given the importance of this signaling pathway in PAR2-evoked nociception, C781 exemplifies a key pharmacophore for PAR2 that can be optimized for clinical development. PERSPECTIVE: Our work provides evidence that PAR2 antagonists that only block certain aspects of signaling by the receptor can be effective for blocking protease-evoked pain in mice. This is important because it creates a rationale for developing safer PAR2-targeting approaches for pain treatment.


Assuntos
Peptídeo Hidrolases , Receptor PAR-2 , Camundongos , Animais , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/farmacologia , beta-Arrestinas/metabolismo , beta-Arrestinas/farmacologia , Receptor PAR-2/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Transdução de Sinais/fisiologia
18.
Br J Pharmacol ; 180(5): 667-680, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35735078

RESUMO

BACKGROUND AND PURPOSE: Asthma is a heterogenous disease strongly associated with inflammation that has many different causes and triggers. Current asthma treatments target symptoms such as bronchoconstriction and airway inflammation. Despite recent advances in biological therapies, there remains a need for new classes of therapeutic agents with novel, upstream targets. The proteinase-activated receptor-2 (PAR2) has long been implicated in allergic airway inflammation and asthma and it remains an intriguing target for novel therapies. Here, we describe the actions of C781, a newly developed low MW PAR2 biased antagonist, in vitro and in vivo in the context of acute allergen exposure. EXPERIMENTAL APPROACH: A human bronchial epithelial cell line expressing PAR2 (16HBE14o- cells) was used to evaluate the modulation in vitro, by C781, of physiological responses to PAR2 activation and downstream ß-arrestin/MAPK and Gq/Ca2+ signalling. Acute Alternaria alternata sensitized and challenged mice were used to evaluate C781 as a prophylactically administered modulator of airway hyperresponsiveness, inflammation and mucus overproduction in vivo. KEY RESULTS: C781 reduced in vitro physiological signalling in response to ligand and proteinase activation. C781 effectively antagonized ß-arrestin/MAPK signalling without significant effect on Gq/Ca2+ signalling in vitro. Given prophylactically, C781 modulated airway hyperresponsiveness, airway inflammation and mucus overproduction of the small airways in an acute allergen-challenged mouse model. CONCLUSION AND IMPLICATIONS: Our work demonstrates the first biased PAR2 antagonist for ß-arrestin/MAPK signalling. C781 is efficacious as a prophylactic treatment for allergen-induced airway hyperresponsiveness and inflammation in mice. It exemplifies a key pharmacophore for PAR2 that can be optimized for clinical development.


Assuntos
Asma , Hiper-Reatividade Brônquica , Hipersensibilidade Respiratória , Camundongos , Humanos , Animais , Alérgenos , Receptor PAR-2 , beta-Arrestinas , Asma/tratamento farmacológico , Hipersensibilidade Respiratória/tratamento farmacológico , beta-Arrestina 1 , Inflamação/tratamento farmacológico , Camundongos Endogâmicos BALB C , Pulmão , Hiper-Reatividade Brônquica/tratamento farmacológico
19.
J Biol Chem ; 286(21): 19076-88, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21467041

RESUMO

Protease-activated receptor-2 (PAR(2)) is one of four protease-activated G-protein-coupled receptors. PAR(2) is expressed on multiple cell types where it contributes to cellular responses to endogenous and exogenous proteases. Proteolytic cleavage of PAR(2) reveals a tethered ligand that activates PAR(2) and two major downstream signaling pathways: mitogen-activated protein kinase (MAPK) and intracellular Ca(2+) signaling. Peptides or peptidomimetics can mimic binding of the tethered ligand to stimulate signaling without the nonspecific effects of proteases. The most commonly used peptide activators of PAR(2) (e.g. SLIGRL-NH(2) and SLIGKV-NH(2)) lack potency at the receptor. However, although the potency of 2-furoyl-LIGRLO-NH(2) (2-f-LIGRLO-NH(2)) underscores the use of peptidomimetic PAR(2) ligands as a mechanism to enhance pharmacological action at PAR(2), 2-f-LIGRLO-NH(2) has not been thoroughly evaluated. We evaluated the known agonist 2-f-LIGRLO-NH(2) and two recently described pentapeptidomimetic PAR(2)-specific agonists, 2-aminothiazol-4-yl-LIGRL-NH(2) (2-at-LIGRL-NH(2)) and 6-aminonicotinyl-LIGRL-NH(2) (6-an-LIGRL-NH(2)). All peptidomimetic agonists stimulated PAR(2)-dependent in vitro physiological responses, MAPK signaling, and Ca(2+) signaling with an overall rank order of potency of 2-f-LIGRLO-NH(2) ≈ 2-at-LIGRL-NH(2) > 6-an-LIGRL-NH(2) ≫ SLIGRL-NH(2). Because PAR(2) plays a major role in pathological pain conditions and to test potency of the peptidomimetic agonists in vivo, we evaluated these agonists in models relevant to nociception. All three agonists activated Ca(2+) signaling in nociceptors in vitro, and both 2-at-LIGRL-NH(2) and 2-f-LIGRLO-NH(2) stimulated PAR(2)-dependent thermal hyperalgesia in vivo. We have characterized three high potency ligands that can be used to explore the physiological role of PAR(2) in a variety of systems and pathologies.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Receptor PAR-2/agonistas , Cálcio/metabolismo , Sinalização do Cálcio/genética , Linhagem Celular Transformada , Humanos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/genética , Hiperalgesia/metabolismo , Ligantes , Sistema de Sinalização das MAP Quinases/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Peptidomiméticos/síntese química , Receptor PAR-2/genética , Receptor PAR-2/metabolismo
20.
Bioconjug Chem ; 23(10): 2098-104, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-22994402

RESUMO

Protease activated receptor-2 (PAR(2)) is one of four G-protein coupled receptors (GPCRs) that can be activated by exogenous or endogenous proteases, which cleave the extracellular amino-terminus to expose a tethered ligand and subsequent G-protein signaling. Alternatively, PAR(2) can be activated by peptide or peptidomimetic ligands derived from the sequence of the natural tethered ligand. Screening of novel ligands that directly bind to PAR(2) to agonize or antagonize the receptor has been hindered by the lack of a sensitive, high-throughput, affinity binding assay. In this report, we describe the synthesis and use of a modified PAR(2) peptidomimetic agonist, 2-furoyl-LIGRLO-(diethylenetriaminepentaacetic acid)-NH(2) (2-f-LIGRLO-dtpa), designed for lanthanide-based time-resolved fluorescence screening. We first demonstrate that 2-f-LIGRLO-dtpa is a potent and specific PAR(2) agonist across a full spectrum of in vitro assays. We then show that 2-f-LIGRLO-dtpa can be utilized in an affinity binding assay to evaluate the ligand-receptor interactions between known high potency peptidomimetic agonists (2-furoyl-LIGRLO-NH(2), 2-f-LIGRLO; 2-aminothiazol-4-yl-LIGRL-NH(2), 2-at-LIGRL; 6-aminonicotinyl-LIGRL-NH(2), 6-an-LIGRL) and PAR(2). A separate N-terminal peptidomimetic modification (3-indoleacetyl-LIGRL-NH(2), 3-ia-LIGRL) that does not activate PAR(2) signaling was used as a negative control. All three peptidomimetic agonists demonstrated sigmoidal competitive binding curves, with the more potent agonists (2-f-LIGRLO and 2-at-LIGRL) displaying increased competition. In contrast, the control peptide (3-ia-LIGRL) displayed limited competition for PAR(2) binding. In summary, we have developed a europium-containing PAR(2) agonist that can be used in a highly sensitive affinity binding assay to screen novel PAR(2) ligands in a high-throughput format. This ligand can serve as a critical tool in the screening and development of PAR(2) ligands.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Európio/química , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Receptor PAR-2/agonistas , Animais , Ligação Competitiva , Linhagem Celular , Humanos , Oligopeptídeos/síntese química , Ácido Pentético/química , Ratos , Receptor PAR-2/metabolismo , Espectrometria de Fluorescência , Coloração e Rotulagem , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa