Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838932

RESUMO

New sets of ibuprofen and indomethacin conjugates comprising triazolyl heterocycle were synthesized via click chemistry, adopting an optimized protocol through the molecular hybridization approach affording the targeted agents in good yields. The new non-steroidal anti-inflammatory drug (NSAID) conjugates were designed and synthesized and could be considered as potential drug candidates for the treatment of pain and inflammation. The anti-inflammatory properties were investigated for all the synthesized conjugates. Among 14 synthesized conjugates, four (5a, 5b, 5d, and 5e) were found to have significant anti-inflammatory properties potency 117.6%, 116.5%, 93.8%, and 109.1% in comparison to reference drugs ibuprofen (97.2%) and indomethacin (100%) in the rat paw edema carrageenan test without any ulcerogenic liability. The suppression effect of cytokines IL-6, TNF-α, and iNOS in addition to NO in the LPS-induced RAW264.7 cells supports the promising anti-inflammatory properties observed in the ibuprofen conjugates. In addition, several conjugates showed promising peripheral and central analgesic activity. The selectivity index (SI) of compound 5a (23.096) indicates the significant efficacy and selectivity for COX-2 over COX-1. Molecular modeling (docking and QSAR) studies described the observed biological properties.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Ibuprofeno , Ratos , Animais , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ibuprofeno/uso terapêutico , Relação Estrutura-Atividade , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios/farmacologia , Indometacina/farmacologia , Carragenina/efeitos adversos , Ciclo-Oxigenase 2/metabolismo , Edema/tratamento farmacológico , Simulação de Acoplamento Molecular
2.
Bioorg Chem ; 99: 103782, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32229348

RESUMO

A series of novel 5-(substituted quinolin-3-yl or 1-naphthyl)methylene)-3-substituted imidazolidin-2,4-dione 9-26 was designed and synthesized. The prepared compounds were identified using 1H NMR, 13C NMR as well as elemental analyses. The inhibitory activity of 9-26 on HIV-1IIIB replication in MT-2 cells was evaluated. Some derivatives showed good to excellent anti-HIV activities as compounds 13, 18, 19, 20, 22 and 23. They showed EC50 of 0.148, 0.460, 0.332, 0.50, 0.271 and 0.420 µM respectively being more potent than compound I (EC50 = 0.70 µM) and II ( EC50 = 2.40 µM) as standards. The inhibitory activity of 9-26 on infected primary HIV-1 domain, 92US657 (clade B, R5) was investigated. All the tested compounds consistently inhibited infection of this virus with EC50 from 0.520 to 11.857 µM. Results from SAR studies showed that substitution on ring A with 6/7/8-methyl group resulted in significant increase in the inhibitory activity against HIV-1IIIB infection (5- >300 times) compared to the unsubstituted analog 9. The cytotoxicity of these compounds on MT-2 cells was tested and their CC50 values ranged from 11 to 85 µM with selectivity indexes ranged from 0.53 to 166. The docking study revealed nice fitting of the new compounds into the hydrophobic pocket of HIV-1 gp41 and higher affinity than NB-64. Compound 13, the most active in preventing HIV-1IIIB infection, adopted a similar orientation to compound IV. Molecular docking analysis of the new compounds revealed hydrogen bonding interactions between the imidazolidine-2,4-dione ring and LYS574 which were missed in the weakly active derivatives.


Assuntos
Fármacos Anti-HIV/farmacologia , Desenho de Fármacos , Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , Imidazolidinas/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Relação Dose-Resposta a Droga , Inibidores da Fusão de HIV/síntese química , Inibidores da Fusão de HIV/química , HIV-1/enzimologia , Imidazolidinas/síntese química , Imidazolidinas/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
3.
Molecules ; 25(14)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650556

RESUMO

Two sets of diphenyl ether derivatives incorporating five-membered 1,3,4-oxadiazoles, and their open-chain aryl hydrazone analogs were synthesized in good yields. Most of the synthesized compounds showed promising in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv. Three diphenyl ether derivatives, namely hydrazide 3, oxadiazole 4 and naphthylarylidene 8g exhibited pronounced activity with minimum inhibitory concentrations (MICs) of 0.61, 0.86 and 0.99 µg/mL, respectively compared to triclosan (10 µg/mL) and isoniazid (INH) (0.2 µg/mL). Compounds 3, 4, and 8g showed the InhA reductase enzyme inhibition with higher IC50 values (3.28-4.23 µM) in comparison to triclosan (1.10 µM). Correlation between calculated physicochemical parameters and biological activity has been discussed which justifies a strong correlation with respect to the inhibition of InhA reductase enzyme. Molecular modeling and drug-likeness studies showed good agreement with the obtained biological evaluation. The structural and experimental information concerning these three InhA inhibitors will likely contribute to the lead optimization of new antibiotics for M. tuberculosis.


Assuntos
Antituberculosos , Proteínas de Bactérias , Inibidores Enzimáticos , Mycobacterium tuberculosis/enzimologia , Oxirredutases , Triclosan/análogos & derivados , Animais , Antituberculosos/síntese química , Antituberculosos/química , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Chlorocebus aethiops , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Células Vero
4.
Mol Cancer Ther ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814440

RESUMO

Advanced urinary bladder cancer (BC) is characterized by rapid progression and development of therapy resistance. About 30% of the patients are diagnosed with high-grade tumors (Grade >T2a). A typical non-surgical treatment is systemic chemotherapy using Cisplatin (C) and Gemcitabine (G). However, treatment failure and subsequent disease progression are common in treated patients, and adjuvant therapies are not significantly effective. The therapeutic potential of a molecular hybrid of Ursolic Acid (UA), a pentacyclic-triterpene conjugated to N-methyl piperazine (UA4), was tested on both naïve (WT) and Gemcitabine-resistant (GemR) variants of two human invasive BC cell lines, 5637 and T24. UA4 killed 5637 (4µM), T24 (4µM) WT, and GemR cells invitro at equal potency. Pretreatment with UA4 followed by G synergistically killed WT and GemR cells by >50% compared to G followed by UA4. Oral gavage of UA4 (100 mg/kg) inhibited WT and GemR tumor growth in athymic mice. UA4 + G was more effective against GemR tumors than either drug alone. Studies revealed cytotoxic autophagy as a mechanism of UA4 cytotoxicity. UA4 induced moderate apoptosis in T24 but not in 5637 cells. Mitochondrial integrity and function were most affected by UA4 due to high levels of reactive oxygen species (ROS), disruption of mitochondrial membrane, and cell cycle arrest. These effects were enhanced in the UA4+G combination. UA4 was well-tolerated in mice, and oral gavage led to a serum level >1µM with no systemic toxicity. These results show the potential of UA4 as a non-toxic alternative treatment for high-grade BC.

5.
Mol Cancer Ther ; : OF1-OF15, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904221

RESUMO

Advanced urinary bladder cancer is characterized by rapid progression and development of therapy resistance. About 30% of the patients are diagnosed with high-grade tumors (grade > T2a). A typical nonsurgical treatment is systemic chemotherapy using cisplatin (C) and gemcitabine (G). However, treatment failure and subsequent disease progression are common in treated patients, and adjuvant therapies are not significantly effective. The therapeutic potential of a molecular hybrid of ursolic acid (UA), a pentacyclic-triterpene conjugated to N-methyl piperazine (UA4), was tested on both naïve (WT) and gemcitabine-resistant (GemR) variants of two human invasive bladder cancer cell lines, 5637 and T24. UA4 killed 5637 (4 µmol/L), T24 (4 µmol/L) WT, and GemR cells in vitro at equal potency. Pretreatment with UA4 followed by G synergistically killed WT and GemR cells by >50% compared with G followed by UA4. Oral gavage of UA4 (100 mg/kg) inhibited WT and GemR tumor growth in athymic mice. UA4 + G was more effective against GemR tumors than either drug alone. Studies revealed cytotoxic autophagy as a mechanism of UA4 cytotoxicity. UA4 induced moderate apoptosis in T24 but not in 5637 cells. Mitochondrial integrity and function were most affected by UA4 because of high levels of reactive oxygen species, disruption of mitochondrial membrane, and cell cycle arrest. These effects were enhanced in the UA4 + G combination. UA4 was well-tolerated in mice, and oral gavage led to a serum level >1 µmol/L with no systemic toxicity. These results show the potential of UA4 as a nontoxic alternative treatment for high-grade bladder cancer.

6.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35215303

RESUMO

The development of new antibiotics to treat multidrug-resistant (MDR) bacteria or possess broad-spectrum activity is one of the challenging tasks. Unfortunately, there are not many new antibiotics in clinical trials. So, the molecular hybridization approach could be an effective strategy to develop potential drug candidates using the known scaffolds. We synthesized a total of 31 diverse linezolid conjugates 3, 5, 7, 9, 11, 13, and 15 using our established benzotriazole chemistry with good yield and purity. Some of the synthesized conjugates exhibited promising antibacterial properties against different strains of bacteria. Among all the synthesized compounds, 5d is the most promising antibacterial agent with MIC 4.5 µM against S. aureus and 2.25 µM against B. subtilis. Using our experimental data pool, we developed a robust QSAR (R2 = 0.926, 0.935; R2cvOO = 0.898, 0.915; R2cvMO = 0.903, 0.916 for the S. aureus and B. subtilis models, respectively) and 3D-pharmacophore models. We have also determined the drug-like properties of the synthesized conjugates using computational tools. Our findings provide valuable insight into the possible linezolid-based antibiotic drug candidates.

7.
Med Chem ; 17(1): 71-84, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31483233

RESUMO

BACKGROUND: Bacterial infections are considered as one of the major global health threats, so it is very essential to design and develop new antibacterial agents to overcome the drawbacks of existing antibacterial agents. METHODS: The aim of this work is to synthesize a series of new fluoroquinolone-3-carboxamide amino acid conjugates by molecular hybridization. We utilized benzotriazole chemistry to synthesize the desired hybrid conjugates. RESULTS: All the conjugates were synthesized in good yields, characterized, evaluated for their antibacterial activity. The compounds were screened for their antibacterial activity using methods adapted from the Clinical and Laboratory Standards Institute. Synthesized conjugates were tested for activity against medically relevant pathogens; Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27856) Staphylococcus aureus (ATCC 25923) and Enterococcus faecalis (ATCC 19433). CONCLUSION: The observed antibacterial experimental data indicates the selectivity of our synthesized conjugates against E.Coli. The protecting group on amino acids decreases the antibacterial activity. The synthesized conjugates are non-toxic to the normal cell lines. The experimental data were supported by computational studies.


Assuntos
Aminoácidos/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Fluoroquinolonas/síntese química , Fluoroquinolonas/farmacologia , Modelos Moleculares , Antibacterianos/química , Linhagem Celular , Técnicas de Química Sintética , Fluoroquinolonas/química , Testes de Sensibilidade Microbiana , Conformação Molecular , Relação Estrutura-Atividade
8.
RSC Adv ; 9(35): 20450-20462, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35514723

RESUMO

Benzotriazole and microwave mediated syntheses led to a new set of hybrid conjugates of pyrazinoic acid with isoniazid via amino acid linkers in excellent yields with retention of chirality. Microbiological screening of the synthesized conjugates revealed an exceptionally high activity against some of the pathogenic bacterial strains at low concentrations. Promising antimycobacterial properties were observed against tuberculous and non-tuberculous mycobacteria. Robust molecular models (2D-QSAR and 3D-pharmacophore) support the observed biological properties. Safety profile of the synthesized conjugates against human normal cell (RPE1) was evaluated by MTT technique.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa