Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Cell ; 37(1): 102-11, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20129059

RESUMO

The NEDD8-activating enzyme (NAE) initiates a protein homeostatic pathway essential for cancer cell growth and survival. MLN4924 is a selective inhibitor of NAE currently in clinical trials for the treatment of cancer. Here, we show that MLN4924 is a mechanism-based inhibitor of NAE and creates a covalent NEDD8-MLN4924 adduct catalyzed by the enzyme. The NEDD8-MLN4924 adduct resembles NEDD8 adenylate, the first intermediate in the NAE reaction cycle, but cannot be further utilized in subsequent intraenzyme reactions. The stability of the NEDD8-MLN4924 adduct within the NAE active site blocks enzyme activity, thereby accounting for the potent inhibition of the NEDD8 pathway by MLN4924. Importantly, we have determined that compounds resembling MLN4924 demonstrate the ability to form analogous adducts with other ubiquitin-like proteins (UBLs) catalyzed by their cognate-activating enzymes. These findings reveal insights into the mechanism of E1s and suggest a general strategy for selective inhibition of UBL conjugation pathways.


Assuntos
Monofosfato de Adenosina/metabolismo , Ciclopentanos/metabolismo , Inibidores Enzimáticos/metabolismo , Pirimidinas/metabolismo , Ubiquitinas/metabolismo , Monofosfato de Adenosina/química , Sítios de Ligação , Ligação Competitiva , Linhagem Celular Tumoral , Cristalografia por Raios X , Ciclopentanos/química , Ciclopentanos/farmacologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Proteína NEDD8 , Estrutura Terciária de Proteína , Pirimidinas/química , Pirimidinas/farmacologia , Ubiquitinas/química
2.
Vet Pathol ; 55(2): 341-354, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29191134

RESUMO

The pharmacology, pharmacokinetics, and safety of modified mRNA formulated in lipid nanoparticles (LNPs) were evaluated after repeat intravenous infusion to rats and monkeys. In both species, modified mRNA encoding the protein for human erythropoietin (hEPO) had predictable and consistent pharmacologic and toxicologic effects. Pharmacokinetic analysis conducted following the first dose showed that measured hEPO levels were maximal at 6 hours after the end of intravenous infusion and in excess of 100-fold the anticipated efficacious exposure (17.6 ng/ml) at the highest dose tested.24 hEPO was pharmacologically active in both the rat and the monkey, as indicated by a significant increase in red blood cell mass parameters. The primary safety-related findings were caused by the exaggerated pharmacology of hEPO and included increased hematopoiesis in the liver, spleen, and bone marrow (rats) and minimal hemorrhage in the heart (monkeys). Additional primary safety-related findings in the rat included mildly increased white blood cell counts, changes in the coagulation parameters at all doses, as well as liver injury and release of interferon γ-inducible protein 10 in high-dose groups only. In the monkey, as seen with the parenteral administration of cationic LNPs, splenic necrosis and lymphocyte depletion were observed, accompanied with mild and reversible complement activation. These findings defined a well-tolerated dose level above the anticipated efficacious dose. Overall, these combined studies indicate that LNP-formulated modified mRNA can be administered by intravenous infusion in 2 toxicologically relevant test species and generate supratherapeutic levels of protein (hEPO) in vivo.


Assuntos
Lipídeos/efeitos adversos , Nanopartículas/efeitos adversos , RNA Mensageiro/administração & dosagem , Animais , Coagulação Sanguínea/efeitos dos fármacos , Eritropoetina/genética , Feminino , Hematopoese/efeitos dos fármacos , Infusões Intravenosas/veterinária , Contagem de Leucócitos/veterinária , Macaca fascicularis , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
3.
Blood ; 123(5): 632-9, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24335104

RESUMO

Various translocations and mutations have been identified in myeloma, and certain aberrations, such as t(4;14) and del17, are linked with disease prognosis. To investigate mutational prevalence in myeloma and associations between mutations and patient outcomes, we tested a panel of 41 known oncogenes and tumor suppressor genes in tumor samples from 133 relapsed myeloma patients participating in phase 2 or 3 clinical trials of bortezomib. DNA mutations were identified in 14 genes. BRAF as well as RAS genes were mutated in a large proportion of cases (45.9%) and these mutations were mutually exclusive. New recurrent mutations were also identified, including in the PDGFRA and JAK3 genes. NRAS mutations were associated with a significantly lower response rate to single-agent bortezomib (7% vs 53% in patients with mutant vs wild-type NRAS, P = .00116, Bonferroni-corrected P = .016), as well as shorter time to progression in bortezomib-treated patients (P = .0058, Bonferroni-corrected P = .012). However, NRAS mutation did not impact outcome in patients treated with high-dose dexamethasone. KRAS mutation did not reduce sensitivity to bortezomib or dexamethasone. These findings identify a significant clinical impact of NRAS mutation in myeloma and demonstrate a clear example of functional differences between the KRAS and NRAS oncogenes.


Assuntos
Antineoplásicos/uso terapêutico , Ácidos Borônicos/uso terapêutico , GTP Fosfo-Hidrolases/genética , Proteínas de Membrana/genética , Mieloma Múltiplo/tratamento farmacológico , Mutação , Proteínas Proto-Oncogênicas/genética , Pirazinas/uso terapêutico , Proteínas ras/genética , Bortezomib , Estudos de Coortes , Relação Dose-Resposta a Droga , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Prognóstico , Proteínas Proto-Oncogênicas p21(ras) , Análise de Sobrevida
4.
Nature ; 458(7239): 732-6, 2009 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-19360080

RESUMO

The clinical development of an inhibitor of cellular proteasome function suggests that compounds targeting other components of the ubiquitin-proteasome system might prove useful for the treatment of human malignancies. NEDD8-activating enzyme (NAE) is an essential component of the NEDD8 conjugation pathway that controls the activity of the cullin-RING subtype of ubiquitin ligases, thereby regulating the turnover of a subset of proteins upstream of the proteasome. Substrates of cullin-RING ligases have important roles in cellular processes associated with cancer cell growth and survival pathways. Here we describe MLN4924, a potent and selective inhibitor of NAE. MLN4924 disrupts cullin-RING ligase-mediated protein turnover leading to apoptotic death in human tumour cells by a new mechanism of action, the deregulation of S-phase DNA synthesis. MLN4924 suppressed the growth of human tumour xenografts in mice at compound exposures that were well tolerated. Our data suggest that NAE inhibitors may hold promise for the treatment of cancer.


Assuntos
Antineoplásicos/farmacologia , Ciclopentanos/farmacologia , Inibidores Enzimáticos/farmacologia , Neoplasias/tratamento farmacológico , Pirimidinas/farmacologia , Enzimas Ativadoras de Ubiquitina/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Proteínas Culina/metabolismo , Feminino , Humanos , Camundongos , Proteína NEDD8 , Inibidores de Proteassoma , Transplante Heterólogo , Ubiquitinas/metabolismo
5.
Jpn J Clin Oncol ; 43(4): 357-61, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23493743

RESUMO

Takeda's Oncology Discovery Strategy is tightly integrated and focused on first and fast-best-in-class products and product combinations. Core areas of expertise include hormones, protein homeostasis, biotherapeutics and signal transduction. Strategic imperatives for research success are understanding of unmet needs, focus on biological expertise in foundational areas of leadership and flexibility to adapt to new information.


Assuntos
Antineoplásicos , Indústria Farmacêutica , Produtos Biológicos/uso terapêutico , California , Homeostase/fisiologia , Hormônios/uso terapêutico , Japão , Proteínas/fisiologia , Pesquisa
6.
Blood ; 116(9): 1515-23, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20525923

RESUMO

MLN4924 is a potent and selective small molecule NEDD8-activating enzyme (NAE) inhibitor. In most cancer cells tested, inhibition of NAE leads to induction of DNA rereplication, resulting in DNA damage and cell death. However, in preclinical models of activated B cell-like (ABC) diffuse large B-cell lymphoma (DLBCL), we show that MLN4924 induces an alternative mechanism of action. Treatment of ABC DLBCL cells with MLN4924 resulted in rapid accumulation of pIkappaBalpha, decrease in nuclear p65 content, reduction of nuclear factor-kappaB (NF-kappaB) transcriptional activity, and G(1) arrest, ultimately resulting in apoptosis induction, events consistent with potent NF-kappaB pathway inhibition. Treatment of germinal-center B cell-like (GCB) DLBCL cells resulted in an increase in cellular Cdt-1 and accumulation of cells in S-phase, consistent with cells undergoing DNA rereplication. In vivo administration of MLN4924 to mice bearing human xenograft tumors of ABC- and GCB-DLBCL blocked NAE pathway biomarkers and resulted in complete tumor growth inhibition. In primary human tumor models of ABC-DLBCL, MLN4924 treatment resulted in NF-kappaB pathway inhibition accompanied by tumor regressions. This work describes a novel mechanism of targeted NF-kappaB pathway modulation in DLBCL and provides strong rationale for clinical development of MLN4924 against NF-kappaB-dependent lymphomas.


Assuntos
Ciclopentanos/farmacologia , Centro Germinativo/efeitos dos fármacos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/patologia , NF-kappa B/metabolismo , Pirimidinas/farmacologia , Ubiquitinas/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Western Blotting , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Feminino , Citometria de Fluxo , Centro Germinativo/metabolismo , Centro Germinativo/patologia , Humanos , Linfoma Difuso de Grandes Células B/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína NEDD8 , NF-kappa B/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ubiquitinas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Front Cell Dev Biol ; 8: 155, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32258034

RESUMO

Clinical value and utility of checkpoint inhibitors, a drug class targeting adaptive immune suppression pathways (PD-1, PDL-1, and CTLA-4), is growing rapidly and maintains status of a landmark achievement in oncology. Their efficacy has transformed life expectancy in multiple deadly cancer types (melanoma, lung cancer, renal/urothelial carcinoma, certain colorectal cancers, lymphomas, etc.). Despite significant clinical development efforts, therapeutic indication of approved checkpoint inhibitors are not as wide as the oncology community and patients would like them to be, potentially bringing into question their universal efficacy across tumor histologies. With the main goal of expanding immunotherapy applications, identifying of biomarkers to accurately predict therapeutic response and treatment related side-effects are a paramount need in the field. Specificities surrounding checkpoint inhibitors in clinic, such as unexpected tumor response patterns (pseudo- and hyper-progression), late responders, as well as specific immune mediated toxicities, complicate the management of patients. They stem from the complexities and dynamics of the tumor/host immune interactions, as well as baseline tumor biology. Search for clinically effective biomarkers therefore calls for a holistic approach, rather than implementation of a single analyte. The goal is to achieve dynamic and comprehensive acquisition, analyses and interpretation of immunological and biologic information about the tumor and the immune system, and to compute these parameters into an actionable, maximally predictive value at the individual patient level. Limitation delaying swift incorporation of validated immuno-oncology biomarkers span from standardized biospecimens acquisition and processing, selection of proficient biomarker discovery and validation methods, to establishing multidisciplinary consortiums and data sharing platforms. Multi-disciplinary efforts have already yielded some approved (PDL-1 and MSI-status) and other advanced tests (TMB, neoantigen pattern, and TIL infiltration rate). Importantly, clinical trial taskforces now recognize the imperative of the biomarker-driven trial design and execution, to enable translating biomarker discoveries into the clinical setting. This will ensure we utilize the "conspiracy" between the peripheral and intra-tumoral dynamic markers in shaping responses to checkpoint blockade, for the ultimate patient benefit.

9.
Mol Imaging Biol ; 8(5): 300-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16897318

RESUMO

PURPOSE: The aim of this study was to validate quantitative metabolic response of tumors to a treatment measured by longitudinal 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) micro positron emission tomography (microPET) as a robust tool for preclinical evaluation of new anticancer agents. PROCEDURES: Severe combined immunodeficiency mice with CWR22 xenografts were intravenously treated with bortezomib (Velcade) at 0.8 mg/kg on days 0, 3, 7, 10, and 14 and imaged with FDG microPET before, during and after treatment. Quantitative indices of tumor FDG uptake were developed. RESULTS: FDG microPET images successfully revealed the gradual reduction of tumor FDG uptake on day 4 onward despite no absolute tumor shrinkage. The standardized uptake values of FDG in tumors was reduced to 43% of the baseline values. Using the total tumor FDG uptake as the viable tumor burden, we found 86% tumor inhibition, compared to a 55% tumor growth inhibition in tumor volume measurement. CONCLUSION: FDG microPET imaging can provide an additional dimension of the efficacy of anticancer therapies that may otherwise be underestimated by tumor volume measurement.


Assuntos
Ácidos Borônicos/uso terapêutico , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico , Pirazinas/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Bortezomib , Proliferação de Células/efeitos dos fármacos , Avaliação de Medicamentos , Fluordesoxiglucose F18/farmacocinética , Humanos , Estudos Longitudinais , Masculino , Camundongos , Camundongos SCID , Tamanho do Órgão/efeitos dos fármacos , Doses de Radiação , Resultado do Tratamento , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
ACS Med Chem Lett ; 6(6): 630-4, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26101564

RESUMO

The Aurora kinases are essential for cell mitosis, and the dysregulation of Aurora A and B have been linked to the etiology of human cancers. Investigational agents MLN8054 (8) and alisertib (MLN8237, 10) have been identified as high affinity, selective, orally bioavailable inhibitors of Aurora A that have advanced into human clinical trials. Alisertib (10) is currently being evaluated in multiple Phase II and III clinical trials in hematological malignancies and solid tumors.

11.
Cancer Cell ; 21(3): 388-401, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22439935

RESUMO

MLN4924 is an investigational small-molecule inhibitor of NEDD8-activating enzyme (NAE) in clinical trials for the treatment of cancer. MLN4924 is a mechanism-based inhibitor, with enzyme inhibition occurring through the formation of a tight-binding NEDD8-MLN4924 adduct. In cell and xenograft models of cancer, we identified treatment-emergent heterozygous mutations in the adenosine triphosphate binding pocket and NEDD8-binding cleft of NAEß as the primary mechanism of resistance to MLN4924. Biochemical analyses of NAEß mutants revealed slower rates of adduct formation and reduced adduct affinity for the mutant enzymes. A compound with tighter binding properties was able to potently inhibit mutant enzymes in cells. These data provide rationales for patient selection and the development of next-generation NAE inhibitors designed to overcome treatment-emergent NAEß mutations.


Assuntos
Ciclopentanos/farmacologia , Inibidores Enzimáticos/farmacologia , Mutação , Pirimidinas/farmacologia , Enzimas Ativadoras de Ubiquitina/genética , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Camundongos , Camundongos Nus , Ratos , Ratos Nus , Células Tumorais Cultivadas , Enzimas Ativadoras de Ubiquitina/química , Enzimas Ativadoras de Ubiquitina/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancer Chemother Pharmacol ; 68(5): 1145-54, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21400028

RESUMO

PURPOSE: To investigate whether clinically relevant levels of epigallocatechin gallate (EGCG, a component of green tea) or vitamin C (ascorbic acid) could antagonize bortezomib antitumor activity in CWR22 human prostate xenograft tumors. METHODS: The pharmacokinetics (PK) of EGCG and ascorbic acid were determined in immunocompromised mice and compared with concentrations measured in human PK studies of dietary supplements. Antitumor activity of bortezomib in combination with EGCG or ascorbic acid was determined using several dosing regimens to evaluate different target plasma concentrations of EGCG and ascorbic acid. RESULTS: Bortezomib dosed twice-weekly at 0.8 mg/kg IV demonstrated tumor growth inhibition (TGI) of 53.9-58.9%. However, when combined with EGCG such that the plasma concentrations of EGCG were >200 µM at the time of bortezomib dosing, all antitumor activity was abrogated (TGI = -17.7%). A lower concentration of EGCG (11-16 µM), which is severalfold higher than measured clinically in humans taking EGCG supplements (0.6-3 µM), was not antagonistic to bortezomib (TGI 63.5%). Pharmacodynamic studies of proteasome inhibition reflected these findings. Ascorbic acid (40 and 500 mg/kg PO daily) was evaluated under a similar study design and did not antagonize bortezomib antitumor activity (TGI 57.2 and 72.2%). CONCLUSIONS: No antagonism of bortezomib is seen in preclinical in vivo experiments, where EGCG or ascorbic acid plasma concentrations are commensurate with dietary or supplemental intake. The data suggest that patients receiving bortezomib treatment do not need to avoid normal dietary consumption of green tea, vitamin C-containing foods, or EGCG or vitamin C dietary supplements.


Assuntos
Antineoplásicos/farmacologia , Ácido Ascórbico/farmacologia , Ácidos Borônicos/farmacologia , Catequina/análogos & derivados , Pirazinas/farmacologia , Chá/química , Animais , Antineoplásicos/administração & dosagem , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/farmacocinética , Ácidos Borônicos/administração & dosagem , Bortezomib , Catequina/administração & dosagem , Catequina/farmacologia , Cromatografia Líquida , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Masculino , Camundongos , Camundongos SCID , Neoplasias da Próstata/patologia , Pirazinas/administração & dosagem , Espectrometria de Massas em Tandem , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Clin Cancer Res ; 17(23): 7313-23, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21903769

RESUMO

PURPOSE: The clinical success of the first-in-class proteasome inhibitor bortezomib (VELCADE) has validated the proteasome as a therapeutic target for treating human cancers. MLN9708 is an investigational proteasome inhibitor that, compared with bortezomib, has improved pharmacokinetics, pharmacodynamics, and antitumor activity in preclinical studies. Here, we focused on evaluating the in vivo activity of MLN2238 (the biologically active form of MLN9708) in a variety of mouse models of hematologic malignancies, including tumor xenograft models derived from a human lymphoma cell line and primary human lymphoma tissue, and genetically engineered mouse (GEM) models of plasma cell malignancies (PCM). EXPERIMENTAL DESIGN: Both cell line-derived OCI-Ly10 and primary human lymphoma-derived PHTX22L xenograft models of diffuse large B-cell lymphoma were used to evaluate the pharmacodynamics and antitumor effects of MLN2238 and bortezomib. The iMyc(Cα)/Bcl-X(L) GEM model was used to assess their effects on de novo PCM and overall survival. The newly developed DP54-Luc-disseminated model of iMyc(Cα)/Bcl-X(L) was used to determine antitumor activity and effects on osteolytic bone disease. RESULTS: MLN2238 has an improved pharmacodynamic profile and antitumor activity compared with bortezomib in both OCI-Ly10 and PHTX22L models. Although both MLN2238 and bortezomib prolonged overall survival, reduced splenomegaly, and attenuated IgG2a levels in the iMyc(Cα)/Bcl-X(L) GEM model, only MLN2238 alleviated osteolytic bone disease in the DP54-Luc model. CONCLUSIONS: Our results clearly showed the antitumor activity of MLN2238 in a variety of mouse models of B-cell lymphoma and PCM, supporting its clinical development. MLN9708 is being evaluated in multiple phase I and I/II trials.


Assuntos
Antineoplásicos/farmacologia , Compostos de Boro/farmacologia , Glicina/análogos & derivados , Linfoma de Células B/tratamento farmacológico , Neoplasias de Plasmócitos/tratamento farmacológico , Animais , Antineoplásicos/farmacocinética , Compostos de Boro/administração & dosagem , Compostos de Boro/farmacocinética , Ácidos Borônicos/farmacocinética , Ácidos Borônicos/farmacologia , Bortezomib , Linhagem Celular Tumoral , Glicina/administração & dosagem , Glicina/farmacocinética , Glicina/farmacologia , Humanos , Linfoma de Células B/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Neoplasias de Plasmócitos/metabolismo , Osteólise/tratamento farmacológico , Osteólise/etiologia , Inibidores de Proteases/farmacologia , Inibidores de Proteassoma , Pirazinas/farmacocinética , Pirazinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Clin Cancer Res ; 17(24): 7614-24, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22016509

RESUMO

PURPOSE: Small-molecule inhibitors of Aurora A (AAK) and B (ABK) kinases, which play important roles in mitosis, are currently being pursued in oncology clinical trials. We developed three novel assays to quantitatively measure biomarkers of AAK inhibition in vivo. Here, we describe preclinical characterization of alisertib (MLN8237), a selective AAK inhibitor, incorporating these novel pharmacodynamic assays. EXPERIMENTAL DESIGN: We investigated the selectivity of alisertib for AAK and ABK and studied the antitumor and antiproliferative activity of alisertib in vitro and in vivo. Novel assays were used to assess chromosome alignment and mitotic spindle bipolarity in human tumor xenografts using immunofluorescent detection of DNA and alpha-tubulin, respectively. In addition, 18F-3'-fluoro-3'-deoxy-l-thymidine positron emission tomography (FLT-PET) was used to noninvasively measure effects of alisertib on in vivo tumor cell proliferation. RESULTS: Alisertib inhibited AAK over ABK with a selectivity of more than 200-fold in cells and produced a dose-dependent decrease in bipolar and aligned chromosomes in the HCT-116 xenograft model, a phenotype consistent with AAK inhibition. Alisertib inhibited proliferation of human tumor cell lines in vitro and produced tumor growth inhibition in solid tumor xenograft models and regressions in in vivo lymphoma models. In addition, a dose of alisertib that caused tumor stasis, as measured by volume, resulted in a decrease in FLT uptake, suggesting that noninvasive imaging could provide value over traditional measurements of response. CONCLUSIONS: Alisertib is a selective and potent inhibitor of AAK. The novel methods of measuring Aurora A pathway inhibition and application of tumor imaging described here may be valuable for clinical evaluation of small-molecule inhibitors.


Assuntos
Azepinas/farmacologia , Neoplasias/tratamento farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Fuso Acromático/efeitos dos fármacos , Animais , Aurora Quinase A , Aurora Quinases , Azepinas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Didesoxinucleosídeos/farmacocinética , Feminino , Radioisótopos de Flúor , Células HCT116 , Células HeLa , Humanos , Linfoma/tratamento farmacológico , Linfoma/metabolismo , Linfoma/patologia , Camundongos , Camundongos Nus , Camundongos SCID , Índice Mitótico , Estrutura Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Tomografia por Emissão de Pósitrons , Proteínas Serina-Treonina Quinases/metabolismo , Pirimidinas/química , Fuso Acromático/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Nat Rev Drug Discov ; 8(8): 608, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19644470

RESUMO

Chief Scientific Officer, Millennium: The Takeda Oncology Company,Cambridge, Massachusetts, USA. Prior to joining Millennium, Joseph Bolen, Ph.d., held positions including Vice President and Global head of Oncologic diseases at hoechst Marion Roussel, and executive director of oncology drug discovery at the Bristol-Myers Squibb Pharmaceutical Research institute. in addition to other senior academic positions, he was Section Chief of the Biochemical Oncology Department at the National Cancer Institute in Maryland, USA, and a founding member of their laboratory of tumor virus biology.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Indústria Farmacêutica/organização & administração , Antineoplásicos/uso terapêutico , Ácidos Borônicos/farmacologia , Ácidos Borônicos/uso terapêutico , Bortezomib , Indústria Farmacêutica/tendências , Humanos , Oncologia/economia , Oncologia/métodos , Neoplasias/tratamento farmacológico , Pirazinas/farmacologia , Pirazinas/uso terapêutico
16.
Proc Natl Acad Sci U S A ; 104(10): 4106-11, 2007 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-17360485

RESUMO

Increased Aurora A expression occurs in a variety of human cancers and induces chromosomal abnormalities during mitosis associated with tumor initiation and progression. MLN8054 is a selective small-molecule Aurora A kinase inhibitor that has entered Phase I clinical trials for advanced solid tumors. MLN8054 inhibits recombinant Aurora A kinase activity in vitro and is selective for Aurora A over the family member Aurora B in cultured cells. MLN8054 treatment results in G(2)/M accumulation and spindle defects and inhibits proliferation in multiple cultured human tumor cells lines. Growth of human tumor xenografts in nude mice was dramatically inhibited after oral administration of MLN8054 at well tolerated doses. Moreover, the tumor growth inhibition was sustained after discontinuing MLN8054 treatment. In human tumor xenografts, MLN8054 induced mitotic accumulation and apoptosis, phenotypes consistent with inhibition of Aurora A. MLN8054 is a selective inhibitor of Aurora A kinase that robustly inhibits growth of human tumor xenografts and represents an attractive modality for therapeutic intervention of human cancers.


Assuntos
Antineoplásicos/farmacologia , Benzazepinas/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Administração Oral , Animais , Aurora Quinase A , Aurora Quinase B , Aurora Quinases , Linhagem Celular Tumoral , Progressão da Doença , Relação Dose-Resposta a Droga , Feminino , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa