Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 21(7): 3121-3143, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38814314

RESUMO

Environmental impacts of the industrial revolution necessitate adoption of sustainable practices in all areas of development. The pharmaceutical industry faces increasing pressure to minimize its ecological footprint due to its significant contribution to environmental pollution. Over the past two decades, pharmaceutical cocrystals have received immense popularity due to their ability to optimize the critical attributes of active pharmaceutical ingredients and presented an avenue to bring improved drug products to the market. This review explores the potential of pharmaceutical cocrystals as an ecofriendly alternative to traditional solid forms, offering a sustainable approach to drug development. From reducing the number of required doses to improving the stability of actives, from eliminating synthetic operations to using pharmaceutically approved chemicals, from the use of continuous and solvent-free manufacturing methods to leveraging published data on the safety and toxicology, the cocrystallization approach contributes to sustainability of drug development. The latest trends suggest a promising role of pharmaceutical cocrystals in bringing novel and improved medicines to the market, which has been further fuelled by the recent guidance from the major regulatory agencies.


Assuntos
Cristalização , Desenvolvimento de Medicamentos , Desenvolvimento de Medicamentos/métodos , Preparações Farmacêuticas/química , Indústria Farmacêutica/métodos , Humanos , Química Farmacêutica/métodos
2.
Chem Rev ; 122(13): 11514-11603, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35642550

RESUMO

The subject of crystal engineering started in the 1970s with the study of topochemical reactions in the solid state. A broad chemical definition of crystal engineering was published in 1989, and the supramolecular synthon concept was proposed in 1995 followed by heterosynthons and their potential applications for the design of pharmaceutical cocrystals in 2004. This review traces the development of supramolecular synthons as robust and recurring hydrogen bond patterns for the design and construction of supramolecular architectures, notably, pharmaceutical cocrystals beginning in the early 2000s to the present time. The ability of a cocrystal between an active pharmaceutical ingredient (API) and a pharmaceutically acceptable coformer to systematically tune the physicochemical properties of a drug (i.e., solubility, permeability, hydration, color, compaction, tableting, bioavailability) without changing its molecular structure is the hallmark of the pharmaceutical cocrystals platform, as a bridge between drug discovery and pharmaceutical development. With the design of cocrystals via heterosynthons and prototype case studies to improve drug solubility in place (2000-2015), the period between 2015 to the present time has witnessed the launch of several salt-cocrystal drugs with improved efficacy and high bioavailability. This review on the design, synthesis, and applications of pharmaceutical cocrystals to afford improved drug products and drug substances will interest researchers in crystal engineering, supramolecular chemistry, medicinal chemistry, process development, and pharmaceutical and materials sciences. The scale-up of drug cocrystals and salts using continuous manufacturing technologies provides high-value pharmaceuticals with economic and environmental benefits.


Assuntos
Química Farmacêutica , Disponibilidade Biológica , Cristalização , Preparações Farmacêuticas , Solubilidade
3.
Angew Chem Int Ed Engl ; 60(1): 281-289, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-32697379

RESUMO

Amplified spontaneous emission (ASE) is intrinsically associated with lasing applications. Inefficient photon energy transfer to ASE is a long-standing issue for organic semiconductors that consist of multiple competing radiative decay pathways, far from being rationally regulated from the perspective of molecular arrangements. Herein, we achieve controllable molecular packing motifs by halogen-bonded cocrystallization, leading to ten times increased radiative decay rate, four times larger ASE radiative decay selectivity and thus remarkable ASE threshold decrease from 223 to 22 µJ cm-2 , albeit with a low photoluminescence quantum yield. We have made an in-depth investigation on the relationship among molecular arrangements, vibration modes, radiative decay profiles and ASE properties. The results suggest that cocrystallization presents a powerful approach to tailor the radiative decay pathways, which is fundamentally important to the development of organic ASE and lasing materials.

4.
Angew Chem Int Ed Engl ; 59(2): 833-838, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31573739

RESUMO

Interpenetration in metal-organic frameworks (MOFs) is an intriguing phenomenon with significant impacts on their properties, and functional applications. Herein, we show that a 7-fold interpenetrated MOF (1) is transformed into an 8-fold interpenetrated MOF by the loss of DMF in a single-crystal-to-single-crystal manner. This is accompanied by a giant enhancement of the second harmonic generation (SHG ca. 125 times) and two-photon photoluminescence (ca. 14 times). The strengthened π-π interaction between the individual diamondoid networks and intensified oscillator strength of the molecules aid the augment of dipole moments and boost the nonlinear optical conversion efficiency. Large positive and negative thermal expansions of 1 occur at 30-150 °C before the loss of DMF. These results offer an avenue to manipulate the NLO properties of MOFs using interpenetration and provide access to tunable single-crystal NLO devices.

5.
J Agric Food Chem ; 72(3): 1454-1461, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38207097

RESUMO

This research provides information about combinations of several amino acids, including l-proline (Pro), l-arginine (Arg), and l-histidine (His), with phenoxyacetic acid herbicides (MCPA and 2,4-D). Five amino acid ionic liquids (AAILs), one amino acid higher-melting salt (AAHMS), and two amino acid liquid cocrystals (AALCs) were obtained in high yields (>90%). The ionization of the six new structures was confirmed by NMR, IR, and molecular modeling. X-ray crystallography was used to definitively confirm the binding location of the mobile hydrogen. Furthermore, we propose a computational method for estimating the energy of specific hydrogen bond(s) in AAIL crystals based on the NBO and QTAIM hydrogen bond parameters obtained by model calculations. An in-depth analysis of the structures allowed to answer the question posed in the title, ionic liquids or liquid cocrystals? AAILs based on arginine and histidine were obtained. In contrast, combining proline with MCPA and 2,4-D led to AALCs. Finally, the compounds were analyzed to measure their herbicidal activity. These studies proved that the novel form of MCPA or 2,4-D improved its ability to control weeds compared to commercial formulations containing the same active ingredients.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético , Herbicidas , Líquidos Iônicos , Herbicidas/química , Líquidos Iônicos/química , Aminoácidos/química , Prolina/química , Histidina , Arginina , Ácido 2,4-Diclorofenoxiacético
6.
IUCrJ ; 6(Pt 4): 751-760, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31316818

RESUMO

Sulfonamide drugs are well known antibacterial and antimicrobial molecules for pharmaceutical development. Building a library of suitable supramolecular synthons for the sulfonamide functional group and understanding their crystal structures with partner coformer molecules continues to be a challenge in crystal engineering. Although a few sulfonamide cocrystals with amides and N-oxides have been reported, the body of work on sulfonamide synthons is limited compared with those that have carb-oxy-lic acids and carboxamides. To address this structural gap, the present work is primarily focused on sulfonamide-lactam and sulfonamide-syn-amide synthons with drugs such as celecoxib, hydro-chloro-thia-zide and furosemide. Furthermore, the electrostatic potential of previously reported cocrystals has been recalculated to show that the negative electrostatic potential on the lactam and syn-amide O atom is higher compared with the charge on carboxamide and pyridine N-oxide O atoms. The potential of sulfonamide molecules to form cocrystals with syn-amides and lactams are evaluated in terms of the electrostatic potential energy for the designed supramolecular synthons.

7.
IUCrJ ; 4(Pt 3): 206-214, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28512568

RESUMO

Cocrystals of acemetacin drug (ACM) with nicotinamide (NAM), p-aminobenzoic acid (PABA), valerolactam (VLM) and 2-pyridone (2HP) were prepared by melt crystallization and their X-ray crystal structures determined by high-resolution powder X-ray diffraction. The powerful technique of structure determination from powder data (SDPD) provided details of molecular packing and hydrogen bonding in pharmaceutical cocrystals of acemetacin. ACM-NAM occurs in anhydrate and hydrate forms, whereas the other structures crystallized in a single crystalline form. The carboxylic acid group of ACM forms theacid-amide dimer three-point synthon R32(9)R22(8)R32(9) with three different syn amides (VLM, 2HP and caprolactam). The conformations of the ACM molecule observed in the crystal structures differ mainly in the mutual orientation of chlorobenzene fragment and the neighboring methyl group, being anti (type I) or syn (type II). ACM hydrate, ACM-NAM, ACM-NAM-hydrate and the piperazine salt of ACM exhibit the type I conformation, whereas ACM polymorphs and other cocrystals adopt the ACM type II conformation. Hydrogen-bond interactions in all the crystal structures were quantified by calculating their molecular electrostatic potential (MEP) surfaces. Hirshfeld surface analysis of the cocrystal surfaces shows that about 50% of the contribution is due to a combination of strong and weak O⋯H, N⋯H, Cl⋯H and C⋯H interactions. The physicochemical properties of these cocrystals are under study.

8.
IUCrJ ; 3(Pt 2): 152-60, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27006778

RESUMO

A novel design strategy for cocrystals of a sulfonamide drug with pyridine carboxamides and cyclic amides is developed based on synthon identification as well as size and shape match of coformers. Binary adducts of acetazolamide (ACZ) with lactams (valerolactam and caprolactam, VLM, CPR), cyclic amides (2-pyridone, labeled as 2HP and its derivatives MeHP, OMeHP) and pyridine amides (nicotinamide and picolinamide, NAM, PAM) were obtained by manual grinding, and their single crystals by solution crystallization. The heterosynthons in the binary cocrystals of ACZ with these coformers suggested a ternary combination for ACZ with pyridone and nicotinamide. Novel supramolecular synthons of ACZ with lactams and pyridine carboxamides are reported together with binary and ternary cocrystals for a sulfonamide drug. This crystal engineering study resulted in the first ternary cocrystal of acetazolamide with amide coformers, ACZ-NAM-2HP (1:1:1).

9.
Chem Commun (Camb) ; 52(54): 8342-60, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27278109

RESUMO

Pharmaceutical cocrystals belong to a sub-class of cocrystals wherein one of the components is a drug molecule (or an active pharmaceutical ingredient, API) and the second is a benign food or drug grade additive (generally regarded as safe, GRAS). The two components are hydrogen-bonded in a fixed stoichiometric ratio in the crystal lattice. In the past decade, pharmaceutical cocrystals have demonstrated significant promise in their ability to modify the physicochemical and pharmacokinetic properties of drug substances, such as the solubility and dissolution rate, bioavailability, particle morphology and size, tableting and compaction, melting point, physical form, biochemical and hydration stability, and permeability. In this feature review, we highlight some prominent examples of drug cocrystals which exhibit variable hardness/softness and elasticity/plasticity depending on coformer selection, improvement of solubility and permeability in the same cocrystal, increase of the melting point for solid formulation, enhanced color performance, photostability and hydration stability, and a longer half-life. Cocrystals of flavanoids and polyphenols can make improved pharmaceuticals and also extend to the larger class of nutraceuticals. The application of crystal engineering to assemble ternary cocrystals expands this field to drug-drug cocrystals which may be useful in multi-drug resistance, mitigating side effects of drugs, or attenuating/enhancing drug action synergistically by rational selection. The advent of new techniques for structural characterization beyond the standard X-ray diffraction will provide a better understanding of drug phases which are at the borderline of crystalline-amorphous nature and even newer opportunities in the future.


Assuntos
Cristalização/métodos , Preparações Farmacêuticas/química , Disponibilidade Biológica , Fenômenos Mecânicos , Permeabilidade , Preparações Farmacêuticas/metabolismo , Temperatura de Transição
10.
Chem Commun (Camb) ; 51(85): 15578-81, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26355724

RESUMO

SMBA was selected as a bifunctional sulfa drug to design ternary cocrystals with pyridine amides and lactam coformers. Supramolecular assembly of five ternary cocrystals of p-sulfonamide benzoic acid with nicotinamide and 2-pyridone is demonstrated and reproducible heterosynthons are identified for crystal engineering.

11.
IUCrJ ; 2(Pt 4): 389-401, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26175899

RESUMO

The design of novel supramolecular synthons for functional groups relevant to drugs is an essential prerequisite for applying crystal engineering in the development of novel pharmaceutical cocrystals. It has been convincingly shown over the past decade that molecular level control and modulation can influence the physicochemical properties of drug cocrystals. Whereas considerable advances have been reported on the design of cocrystals for carboxylic acids and carboxamide functional groups, the sulfonamide group, which is a cornerstone of sulfa drugs, is relatively unexplored for reproducible heterosynthon-directed crystal engineering. The occurrence of synthons and isostructurality in sulfonamide-lactam cocrystals (SO2NH2⋯CONH hydrogen bonding) is analyzed to define a strategy for amide-type GRAS (generally recognized as safe) coformers with sulfonamides. Three types of supramolecular synthons are identified for the N-H donor of sulfonamide hydrogen bonding to the C=O acceptor of amide. Synthon 1: catemer synthon C 2 (1)(4) chain motif, synthon 2: dimer-cyclic ring synthon R 2 (2)(8)R 4 (2)(8) motifs, and synthon 3: dimer-catemer synthon of R 2 (2)(8)C 1 (1)(4)D notation. These heterosynthons of the cocrystals observed in this study are compared with the N-H⋯O dimer R 2 (2)(8) ring and C(4) chain motifs of the individual sulfonamide structures. The X-ray crystal structures of sulfonamide-lactam cocrystals exhibit interesting isostructurality trends with the same synthon being present. One-dimensional, two-dimensional and three-dimensional isostructurality in crystal structures is associated with isosynthons and due to their recurrence, novel heterosynthons for sulfonamide cocrystals are added to the crystal engineer's toolkit. With the predominance of sulfa drugs in medicine, these new synthons provide rational strategies for the design of binary and potentially ternary cocrystals of sulfonamides.

12.
IUCrJ ; 1(Pt 2): 136-50, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25075330

RESUMO

Acemetacin (ACM) is a non-steroidal anti-inflammatory drug (NSAID), which causes reduced gastric damage compared with indomethacin. However, acemetacin has a tendency to form a less soluble hydrate in the aqueous medium. We noted difficulties in the preparation of cocrystals and salts of acemetacin by mechanochemical methods, because this drug tends to form a hydrate during any kind of solution-based processing. With the objective to discover a solid form of acemetacin that is stable in the aqueous medium, binary adducts were prepared by the melt method to avoid hydration. The coformers/salt formers reported are pyridine carboxamides [nicotinamide (NAM), isonicotinamide (INA), and picolinamide (PAM)], caprolactam (CPR), p-aminobenzoic acid (PABA), and piperazine (PPZ). The structures of an ACM-INA cocrystal and a binary adduct ACM-PABA were solved using single-crystal X-ray diffraction. Other ACM cocrystals, ACM-PAM and ACM-CPR, and the piperazine salt ACM-PPZ were solved from high-resolution powder X-ray diffraction data. The ACM-INA cocrystal is sustained by the acid⋯pyridine heterosynthon and N-H⋯O catemer hydrogen bonds involving the amide group. The acid⋯amide heterosynthon is present in the ACM-PAM cocrystal, while ACM-CPR contains carboxamide dimers of caprolactam along with acid-carbonyl (ACM) hydrogen bonds. The cocrystals ACM-INA, ACM-PAM and ACM-CPR are three-dimensional isostructural. The carboxyl⋯carboxyl synthon in ACM-PABA posed difficulty in assigning the position of the H atom, which may indicate proton disorder. In terms of stability, the salts were found to be relatively stable in pH 7 buffer medium over 24 h, but the cocrystals dissociated to give ACM hydrate during the same time period. The ACM-PPZ salt and ACM-nicotinamide cocrystal dissolve five times faster than the stable hydrate form, whereas the ACM-PABA adduct has 2.5 times faster dissolution rate. The pharmaceutically acceptable piperazine salt of acemetacin exhibits superior stability, faster dissolution rate and is able to overcome the hydration tendency of the reference drug.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa