RESUMO
The impact of the particle size and wettability on the orientation and order of assemblies obtained by self-organization of functionalized microscale polystyrene cubes at the water/air interface is reported. An increase in the hydrophobicity of 10- and 5-µm-sized self-assembled monolayer-functionalized polystyrene cubes, as assessed by independent water contact angle measurements, led to a change of the preferred orientation of the assembled cubes at the water/air interface from face-up to edge-up and further to vertex-up, irrespective of microcube size. This tendency is consistent with our previous studies with 30-µm-sized cubes. However, the transitions among these orientations and the capillary force-induced structures, which change from flat plate to tilted linear and further to close-packed hexagonal arrangements, were observed to shift to larger contact angles for smaller cube size. Likewise, the order of the formed aggregates decreased significantly with decreasing cube size, which is tentatively attributed to the small ratio of inertial force to capillary force for smaller cubes in disordered aggregates, which results in more difficulties to reorient in the stirring process. Experiments with small fractions of larger cubes added to the water/air interface increased the order of smaller homo-aggregates to values similar to neat 30 µm cube assemblies. Hence, collisions of larger cubes or aggregates are shown to play a decisive role in breaking metastable structures to approach a global energy minimum assembly.
RESUMO
AIMS: Protamine sulfate is commonly used to reverse the action of heparin after catheter ablation procedures. Serious protamine-related adverse effect is rare, but its recognition and appropriate management by electrophysiologists and intensivists is important. Direct ventricular fibrillation (VF) soon after a slow infusion of protamine has not been clearly described. METHODS AND RESULTS: We examined the records of all patients who suffered apparent adverse events after protamine administration in our electrophysiology lab from 2013 to 2018. We describe a series of three patients, all of whom suffered a precipitous fall in arterial pressure followed by VF within minutes after administration of protamine following ablation for atrial fibrillation. The same supplier of protamine was used in all three cases, but they were from different batches. Serum tryptase levels were measured in all cases, immediately post-cardiac arrest and at 2- and 6-h post-event. Immunoglobulin levels were not measured. Two patients recovered after aggressive supportive therapy; the third died despite similar support. CONCLUSION: We have encountered three cases of profound hypotension followed by VF soon after administration of protamine. Although protamine is safe in a large majority of patients, these adverse events have led our centre to exercise greater selectivity and caution in its use.
Assuntos
Parada Cardíaca/induzido quimicamente , Antagonistas de Heparina/efeitos adversos , Protaminas/efeitos adversos , Idoso , Fibrilação Atrial/cirurgia , Ablação por Cateter , Evolução Fatal , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Scanning electron microscopy (SEM) is one of the most common inspection methods in the semiconductor industry and in research labs. To extract the height of structures using SEM images, various techniques have been used, such as tilting a sample, or modifying the SEM tool with extra sources and/or detectors. However, none of these techniques focused on extraction of height information directly from top-down images. In this work, using Monte Carlo simulations, we studied the relation between step height and the emission of secondary electrons (SEs) resulting from exposure with primary electrons at different energies. It is found that part of the SE signal, when scanning over a step edge, is determined by the step height rather than the geometry of the step edge. We present a way to quantify this, arriving at a method to determine the height of structures from top-down SEM images. The method is demonstrated on three different samples using two different SEM tools, and atomic force microscopy is used to measure the step height of the samples. The results obtained are in qualitative agreement with the results from the Monte Carlo simulations.
RESUMO
Metal-halide perovskites are promising lasing materials for the realization of monolithically integrated laser sources, the key components of silicon photonic integrated circuits (PICs). Perovskites can be deposited from solution and require only low-temperature processing, leading to significant cost reduction and enabling new PIC architectures compared to state-of-the-art lasers realized through the costly and inefficient hybrid integration of III-V semiconductors. Until now, however, due to the chemical sensitivity of perovskites, no microfabrication process based on optical lithography (and, therefore, on existing semiconductor manufacturing infrastructure) has been established. Here, the first methylammonium lead iodide perovskite microdisc lasers monolithically integrated into silicon nitride PICs by such a top-down process are presented. The lasers show a record low lasing threshold of 4.7 µJcm-2 at room temperature for monolithically integrated lasers, which are complementary metal-oxide-semiconductor compatible and can be integrated in the back-end-of-line processes.
RESUMO
This work reports on the fabrication and characterization of a graphene based variable optical attenuator integrated on a photonic Si3N4 waveguide and operating at 855 nm wavelength. The variable optical attenuator utilizes the gate voltage dependent optical absorption of a graphene layer, located in the evanescent field of the waveguide. A maximum attenuation of 17 dB is obtained at -3 V gate voltages for a device length of 700 µm. The measured voltage dependent absorption was found to be in good agreement with theoretical simulations, taking into account inter- and intra-band optical conductivity of graphene. An outlook is given on possible margins for increasing the operation speed and reducing the insertion loss of the device, using an optimized layout and improved fabrication processes.
RESUMO
Metal-halide perovskites are a class of solution processed materials with remarkable optoelectronic properties such as high photoluminescence quantum yields and long carrier lifetimes, which makes them promising for a wide range of efficient photonic devices. In this work, we demonstrate the first successful integration of a perovskite laser onto a silicon nitride photonic chip. High throughput, low cost optical lithography is used, followed by indirect structuring of the perovskite waveguide. We embed methylammonium lead tri-iodide (MAPbI3) in a pre-patterned race-track microresonator and couple the emitted light to an integrated photonic waveguide. We clearly observe the build-up of spectrally narrow lasing modes at room temperature upon a pump threshold fluence of 19.6 µJcm-2. Our results evidence the possibility of on-chip lasers based on metal-halide perovskites with industry relevance on a commercially available dielectric photonic platform, which is a step forward towards low-cost integrated photonic devices.
RESUMO
Silicon is not an electro-optic material by itself but the required second-order optical nonlinearity can be induced by breaking the inversion symmetry of the crystal lattice. Recently, an attractive approach has been demonstrated based on a surface-activation in a CMOS-compatible HBr dry etching process. In this work, we further investigate and quantify the second-order nonlinearity induced by this process. Using THz near-field probing we demonstrate that this simple and versatile process can be applied to locally equip silicon nanophotonic chips with micro-scale areas of electro-optic activity. The realization of a first fully integrated Mach-Zehnder modulator device - based on this process - is applied to quantify the nonlinearity to an effective χ((2)) of 9 ± 1 pm/V. Analysis of the thermal stability of the induced nonlinearity reveals post-processing limitations and paths for further efficiency improvements.
RESUMO
In this paper, a model for the analysis and design of a reflective Arrayed Waveguide Grating is presented. The device consists of one half of a regular AWG where each arm waveguide in the array is terminated with a phase shifter and a Sagnac loop reflector. By individually adjusting the phase shifter and Sagnac reflectivity in each arm, additional functionality to that previously reported in the literature is attained, since this enables tailoring the spectral response of the AWG. The design and experimental demonstration of Gaussian pass-band shape devices in Silicon-on-Insulator technology are reported. Methods to obtain flattened and arbitrary spectral responses are described and supported by simulation results.
RESUMO
We present detailed investigations of the local strain distribution and the induced second-order optical nonlinearity within strained silicon waveguides cladded with a Si3N4 strain layer. Micro-Raman Spectroscopy mappings and electro-optic characterization of waveguides with varying width w(WG) show that strain gradients in the waveguide core and the effective second-order susceptibility χ(2)(yyz) increase with reduced w(WG). For 300 nm wide waveguides a mean effective χ(2)(yyz) of 190 pm/V is achieved, which is the highest value reported for silicon so far. To gain more insight into the origin of the extraordinary large optical second-order nonlinearity of strained silicon waveguides numerical simulations of edge induced strain gradients in these structures are presented and discussed.
RESUMO
We demonstrate for the first time a fully integrated electro-optic modulator based on locally strained silicon rib-waveguides. By depositing a Si3N4 strain layer directly on top of the silicon waveguide the silicon crystal is asymmetrically distorted. Thus its inversion symmetry is broken and a linear electro-optic effect is induced. Electro-optic characterization yields a record high value χ(2)(yyz) = 122 pm/V for the second-order susceptibility of the strained silicon waveguide and a strict linear dependence between the applied modulation voltage V(mod) and the resulting effective index change Δn(eff). Spatially resolved micro-Raman and terahertz (THz) difference frequency generation (DFG) experiments provide in-depth insight into the origin of the electro-optic effect by correlating the local strain distribution with the observed second-order optical activity.
RESUMO
A planar nanophotonic Fabry-Perot-like resonator that can defy strong absorption of about 20 000 cm(-1) in the cavity material is demonstrated. Visible laser emission is observed from two silicon subwavelength-sized high index contrast gratings with embedded polymer gain material. The size of the laser is reduced by an order of magnitude compared to established designs based on photonic bandgap structures. As silicon constitutes the most common carrier for electronics, the cost-efficient integration of compact laser sources for visible wavelengths comes within reach.
RESUMO
We demonstrate an all-optical switch based on a waveguide-embedded 1D photonic crystal cavity fabricated in silicon-on-insulator technology. Light at the telecom wavelength is modulated at high-speed by control pulses in the near infrared, harnessing the plasma dispersion effect. The actual absorbed switching power required for a 3 dB modulation depth is measured to be as low as 6 fJ. While the switch-on time is on the order of a few picoseconds, the relaxation time is almost 500 ps and limited by the lifetime of the charge carriers.
RESUMO
We demonstrate the suitability of microcavities based on circular grating resonators (CGRs) as fast switches. This type of optical resonator is characterized by a high quality factor and very small mode volume. The waveguide-coupled CGRs are fabricated with silicon-on-insulator technology compatible with standard complementary metal-oxide semiconductor (CMOS) processing. The linear optical properties of the CGRs are investigated by transmission spectroscopy. From 3D finite-difference time-domain simulations of isolated CGRs, we identify the measured resonances. We probe the spatial distribution and the parasitic losses of a resonant optical mode with scanning near-field optical microscopy. We observe fast all-optical switching within a few picoseconds by optically generating free charge carriers within the cavity.
Assuntos
Refratometria/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
We present all-optical switching in oxygen ion implanted silicon microring resonators. Time-dependent signal modulation is achieved by shifting resonance wavelengths of microrings through the plasma dispersion effect via femtosecond photogeneration of electron-hole pairs and subsequent trapping at implantation induced defect states. We observe a switching time of 25 ps at extinction ratio of 9 dB and free carrier lifetime of 15 ps for an implantation dose of 7 x 10(12) cm(-2). The influence of implantation dose on the switching speed and additional propagation losses of the silicon waveguide--the latter as a result of implantation induced amorphization--is carefully evaluated and in good agreement with theoretical predictions.
Assuntos
Desenho Assistido por Computador , Modelos Teóricos , Óptica e Fotônica/instrumentação , Oxigênio/química , Processamento de Sinais Assistido por Computador/instrumentação , Silício/química , Transdutores , Simulação por Computador , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Integração de SistemasRESUMO
OBJECTIVE: Positive pressure ventilation can affect systemic haemodynamics and regional blood flow distribution with negative effects on hepatic blood flow. We hypothesized that spontaneous breathing (SB) with airway pressure release ventilation (APRV) provides better systemic and hepatic blood flow than APRV without SB. DESIGN: Animal study with a randomized cross-over design. SETTING: Animal laboratory of Bonn University Hospital. SUBJECTS: Twelve pigs with oleic-acid-induced lung injury. INTERVENTIONS: APRV with or without SB in random order. Without SB, either the upper airway pressure limit or the ventilator rate was increased to maintain constant pH and PaCO2. MEASUREMENTS AND RESULTS: Systemic haemodynamics were determined by double-indicator dilution, organ blood flow by coloured microspheres. Systemic blood flow was best during APRV with SB. During APRV with SB blood flow (ml g(-1) min(-1)) was 0.91+/-0.26 (hepatic arterial), 0.29+/-0.05 (stomach), 0.64+/-0.08 (duodenum), 0.62+/-0.10 (jejunum), 0.53+/-0.07 (ileum), 0.53+/-0.07 (colon), 0.46+/-0.09 (pancreas) and 3.59+/-0.55 (spleen). During APRV without SB applying high P(aw) it decreased to 0.13+/-0.01 (stomach), 0.37+/-0.03 (duodenum), 0.29+/-0.03 (jejunum), 0.31+/-0.05 (ileum), 0.32+/-0.03 (colon) and 0.23+/-0.04 (pancreas) p<0.01, respectively. During APRV without SB applying same Paw limits it decreased to 0.18+/-0.03 (stomach, p<0.01), 0.47+/-0.06 (duodenum, p<0.05), 0.38+/-0.05 (jejunum, p<0.01), 0.36+/-0.03 (ileum, p<0.05), 0.39+/-0.05 (colon, p<0.05), and 0.27+/-0.04 (pancreas, p<0.01). Arterial liver blood flow did not change significantly when SB was abolished (0.55+/-0.11 and 0.63+/-0.11, respectively). CONCLUSIONS: Maintaining SB during APRV was associated with better systemic and pre-portal organ blood flow. Improvement in hepatic arterial blood flow was not significant.
Assuntos
Pressão Positiva Contínua nas Vias Aéreas , Fígado/irrigação sanguínea , Síndrome do Desconforto Respiratório/terapia , Animais , Débito Cardíaco/fisiologia , Estudos Cross-Over , Circulação Hepática/fisiologia , Ácido Oleico , Oxigênio/sangue , Respiração , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/fisiopatologia , SuínosRESUMO
One key issue for all nanoimprint techniques is an appropriate method for the fabrication of desirable molds. We report on a novel flexible mold fabrication process-pressure-assisted molding (PAM)-for high resolution soft ultraviolet nanoimprint lithography (soft UV-NIL). In PAM, enhanced master filling is achieved by applying an external pressure during the mold fabrication process. Flexible molds, fabricated with PAM using different pressures in the range of 10-90 kPa, are compared to determine the role of pressures applied in the imprint performance.
RESUMO
We demonstrate high-speed all-optical switching via vertical excitation of an electron-hole plasma in an oxygen-ion implanted silicon-on-insulator microring resonator. Based on the plasma dispersion effect the spectral response of the device is rapidly modulated by photoinjection and subsequent recombination of charge carriers at artificially introduced fast recombination centers. At an implantation dose of 1 x 10(12) cm(-2) the carrier lifetime is reduced to 55 ps, which facilitates optical switching of signal light in the 1.55 mum wavelength range at modulation speeds larger than 5 Gbits/s.
RESUMO
The volatile anaesthetics sevoflurane and desflurane feature new and promising properties. Their low blood and tissue solubility enables rapid onset of and emergence from anaesthesia, thus enhancing patient safety and comfort. This article is designed as an up-to-date review of the pharmacokinetic and pharmacodynamic properties of modern volatile anaesthetics. The first part focuses on pharmacokinetic issues such as substance properties, uptake and elimination. The second part covers the effects of inhaled anaesthetics on organ systems, with emphasis on the central nervous system, the cardiovascular system, the respiratory tract, liver and kidneys.