Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Pharm ; 653: 123844, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272193

RESUMO

Discovering new ligands for enhanced drug uptake and delivery has been the core interest of the drug delivery field. This study capitalizes on the natural "eat-me" signal of calreticulin (CRT), proposing a novel strategy for functionalizing liposomes to improve cellular uptake. CRT is presented on the surfaces of apoptotic cells, and it plays a crucial role in immunogenic cell death (ICD). This is because it is essential for antigen uptake via low-density lipoprotein (LDL) receptor-mediated phagocytosis. Inspired by this mechanism, we interrogated CRT's "eat-me" feature using CRT-derived peptides to functionalize liposomes. We studied liposomal formulation stability, properties, cellular uptake, toxicity, and intracellular trafficking in dendritic cells. We identified key peptide fragments of CRT, specifically from the hydrophilic P-domain, that are compatible with liposomal formulations. Contrary to the more hydrophobic N-domain peptides, the P-domain peptides induced significantly higher liposomal uptake in DC2.4 dendritic cells than cationic DOTAP and anionic DPPG liposomes without inducing toxicity. The P-domain-derived peptides led to enhanced liposomal uptake into DC2.4 dendritic cells compared to the standard DPPC liposomes. The uptake can be partially blocked by the receptor-associated protein (RAP). Upon internalization, P-domain-peptide-decorated liposomes showed higher co-localization with lysosomes compared to the standard DPPC liposomes. Our findings illuminate CRT's operational role and identify P-domain peptides as promising agents for developing biomimetic drug delivery systems that can potentially replicate CRT's "eat-me" function.


Assuntos
Calreticulina , Lipossomos , Lipossomos/química , Peptídeos/química , Sistemas de Liberação de Medicamentos , Células Dendríticas
2.
bioRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38559120

RESUMO

Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are a promising treatment for myocardial infarction, but their therapeutic efficacy is limited by inefficient accumulation at the target site. A non-invasive MSC EV therapy that enhances EV accumulation at the disease site and extends EV retention could significantly improve post-infarct cardiac regeneration. Here we show that EVs decorated with the next-generation of high-affinity heterodimerizing leucine zippers, termed high-affinity (HiA) Zippersomes, amplify targetable surface areas through in situ crosslinking and exhibited ∼7-fold enhanced accumulation within the infarcted myocardium in mice after three days and continued to be retained up to day 21, surpassing the performance of unmodified EVs. After myocardial infarction in mice, high-affinity Zippersomes increase the ejection fraction by 53% and 100% compared with unmodified EVs and PBS, respectively. This notable improvement in cardiac function played a crucial role in restoring healthy heart performance. High-affinity Zippersomes also robustly decrease infarct size by 52% and 60% compared with unmodified EVs and PBS, respectively, thus representing a promising platform for non-invasive vesicle delivery to the infarcted heart. Translational Impact Statement: Therapeutic delivery to the heart remains inefficient and poses a bottleneck in modern drug delivery. Surgical application and intramyocardial injection of therapeutics carry high risks for most heart attack patients. To address these limitations, we have developed a non-invasive strategy for efficient cardiac accumulation of therapeutics using in situ crosslinking. Our approach achieves high cardiac deposition of therapeutics without invasive intramyocardial injections. Patients admitted with myocardial infarction typically receive intravenous access, which would allow painless administration of Zippersomes alongside standard of care.

3.
Nat Commun ; 15(1): 4720, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830847

RESUMO

Bioadhesive materials and patches are promising alternatives to surgical sutures and staples. However, many existing bioadhesives do not meet the functional requirements of current surgical procedures and interventions. Here, we present a translational patch material that exhibits instant adhesion to tissues (2.5-fold stronger than Tisseel, an FDA-approved fibrin glue), ultra-stretchability (stretching to >300% its original length without losing elasticity), compatibility with rapid photo-projection (<2 min fabrication time/patch), and ability to deliver therapeutics. Using our established procedures for the in silico design and optimization of anisotropic-auxetic patches, we created next-generation patches for instant attachment to tissues while conforming to a broad range of organ mechanics ex vivo and in vivo. Patches coated with extracellular vesicles derived from mesenchymal stem cells demonstrate robust wound healing capability in vivo without inducing a foreign body response and without the need for patch removal that can cause pain and bleeding. We further demonstrate a single material-based, void-filling auxetic patch designed for the treatment of lung puncture wounds.


Assuntos
Adesivos Teciduais , Cicatrização , Animais , Humanos , Elasticidade , Células-Tronco Mesenquimais/citologia , Camundongos , Adesivo Tecidual de Fibrina , Masculino , Materiais Biocompatíveis/química
4.
J Control Release ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111600

RESUMO

Extracellular vesicles (EVs), or exosomes, play important roles in physiological and pathological cellular communication and have gained substantial traction as biological drug carriers. EVs contain both short and long non-coding RNAs that regulate gene expression and epigenetic processes. To fully capitalize on the potential of EVs as drug carriers, it is important to study and understand the intricacies of EV function and EV RNA-based communication. Here we developed a genetically encodable RNA-based biomaterial, termed EXO-Probe, for tracking EV RNAs. The EXO-Probe comprises an EV-loading RNA sequence (EXO-Code), fused to a fluorogenic RNA Mango aptamer for RNA imaging. This fusion construct allowed the visualization and tracking of EV RNA and colocalization with markers of multivesicular bodies; imaging RNA within EVs, and non-destructive quantification of EVs. Overall, the new RNA-based biomaterial provides a useful and versatile means to interrogate the role of EVs in cellular communication via RNA trafficking to EVs and to study cellular sorting decisions. The system will also help lay the foundation to further improve the therapeutic efficacy of EVs as drug carriers.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa