RESUMO
The Double Asteroid Redirection Test (DART) spacecraft successfully performed the first test of a kinetic impactor for asteroid deflection by impacting Dimorphos, the secondary of near-Earth binary asteroid (65803) Didymos, and changing the orbital period of Dimorphos. A change in orbital period of approximately 7 min was expected if the incident momentum from the DART spacecraft was directly transferred to the asteroid target in a perfectly inelastic collision1, but studies of the probable impact conditions and asteroid properties indicated that a considerable momentum enhancement (ß) was possible2,3. In the years before impact, we used lightcurve observations to accurately determine the pre-impact orbit parameters of Dimorphos with respect to Didymos4-6. Here we report the change in the orbital period of Dimorphos as a result of the DART kinetic impact to be -33.0 ± 1.0 (3σ) min. Using new Earth-based lightcurve and radar observations, two independent approaches determined identical values for the change in the orbital period. This large orbit period change suggests that ejecta contributed a substantial amount of momentum to the asteroid beyond what the DART spacecraft carried.
RESUMO
Radial velocity surveys suggest that the Solar System may be unusual and that Jupiter-like planets have a frequency < 20% around solar-type stars. However, they may be much more common in one of the closest associations in the solar neighbourhood. Young moving stellar groups are the best targets for direct imaging of exoplanets and four massive Jupiter-like planets have been already discovered in the nearby young ß Pic Moving Group (BPMG) via high-contrast imaging, and four others were suggested via high precision astrometry by the European Space Agency's Gaia satellite. Here we analyze 30 stars in BPMG and show that 20 of them might potentially host a Jupiter-like planet as their orbits would be stable. Considering incompleteness in observations, our results suggest that Jupiter-like planets may be more common than previously found. The next Gaia data release will likely confirm our prediction.