Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(26): e2110364119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35733267

RESUMO

Modeling fire spread as an infection process is intuitive: An ignition lights a patch of fuel, which infects its neighbor, and so on. Infection models produce nonlinear thresholds, whereby fire spreads only when fuel connectivity and infection probability are sufficiently high. These thresholds are fundamental both to managing fire and to theoretical models of fire spread, whereas applied fire models more often apply quasi-empirical approaches. Here, we resolve this tension by quantifying thresholds in fire spread locally, using field data from individual fires (n = 1,131) in grassy ecosystems across a precipitation gradient (496 to 1,442 mm mean annual precipitation) and evaluating how these scaled regionally (across 533 sites) and across time (1989 to 2012 and 2016 to 2018) using data from Kruger National Park in South Africa. An infection model captured observed patterns in individual fire spread better than competing models. The proportion of the landscape that burned was well described by measurements of grass biomass, fuel moisture, and vapor pressure deficit. Regionally, averaging across variability resulted in quasi-linear patterns. Altogether, results suggest that models aiming to capture fire responses to global change should incorporate nonlinear fire spread thresholds but that linear approximations may sufficiently capture medium-term trends under a stationary climate.


Assuntos
Ecossistema , Poaceae , Incêndios Florestais , Clima , Mudança Climática , Modelos Teóricos , África do Sul
2.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35165205

RESUMO

Recent findings point to plant root traits as potentially important for shaping the boundaries of biomes and for maintaining the plant communities within. We examined two hypotheses: 1) Thin-rooted plant strategies might be favored in biomes with low soil resources; and 2) these strategies may act, along with fire, to maintain the sharp boundary between the Fynbos and Afrotemperate Forest biomes in South Africa. These biomes differ in biodiversity, plant traits, and physiognomy, yet exist as alternative stable states on the same geological substrate and in the same climate conditions. We conducted a 4-y field experiment to examine the ability of Forest species to invade the Fynbos as a function of growth-limiting nutrients and belowground plant-plant competition. Our results support both hypotheses: First, we found marked biome differences in root traits, with Fynbos species exhibiting the thinnest roots reported from any biome worldwide. Second, our field manipulation demonstrated that intense belowground competition inhibits the ability of Forest species to invade Fynbos. Nitrogen was unexpectedly the resource that determined competitive outcome, despite the long-standing expectation that Fynbos is severely phosphorus constrained. These findings identify a trait-by-resource feedback mechanism, in which most species possess adaptive traits that modify soil resources in favor of their own survival while deterring invading species. Our findings challenge the long-held notion that biome boundaries depend primarily on external abiotic constraints and, instead, identify an internal biotic mechanism-a selective feedback among traits, plant-plant competition, and ecosystem conditions-that, along with contrasting fire regime, can act to maintain biome boundaries.


Assuntos
Ecossistema , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/fisiologia , África do Sul
3.
Ecol Lett ; 27(6): e14450, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38857323

RESUMO

Fire and herbivory interact to alter ecosystems and carbon cycling. In savannas, herbivores can reduce fire activity by removing grass biomass, but the size of these effects and what regulates them remain uncertain. To examine grazing effects on fuels and fire regimes across African savannas, we combined data from herbivore exclosure experiments with remotely sensed data on fire activity and herbivore density. We show that, broadly across African savannas, grazing herbivores substantially reduce both herbaceous biomass and fire activity. The size of these effects was strongly associated with grazing herbivore densities, and surprisingly, was mostly consistent across different environments. A one-zebra increase in herbivore biomass density (~100 kg/km2 of metabolic biomass) resulted in a ~53 kg/ha reduction in standing herbaceous biomass and a ~0.43 percentage point reduction in burned area. Our results indicate that fire models can be improved by incorporating grazing effects on grass biomass.


Assuntos
Biomassa , Incêndios , Pradaria , Herbivoria , Animais , Poaceae/fisiologia , África
4.
Proc Natl Acad Sci U S A ; 117(7): 3663-3669, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32029599

RESUMO

The ecological niche of a species describes the variation in population growth rates along environmental gradients that drives geographic range dynamics. Niches are thus central for understanding and forecasting species' geographic distributions. However, theory predicts that migration limitation, source-sink dynamics, and time-lagged local extinction can cause mismatches between niches and geographic distributions. It is still unclear how relevant these niche-distribution mismatches are for biodiversity dynamics and how they depend on species life-history traits. This is mainly due to a lack of the comprehensive, range-wide demographic data needed to directly infer ecological niches for multiple species. Here we quantify niches from extensive demographic measurements along environmental gradients across the geographic ranges of 26 plant species (Proteaceae; South Africa). We then test whether life history explains variation in species' niches and niche-distribution mismatches. Niches are generally wider for species with high seed dispersal or persistence abilities. Life-history traits also explain the considerable interspecific variation in niche-distribution mismatches: poorer dispersers are absent from larger parts of their potential geographic ranges, whereas species with higher persistence ability more frequently occupy environments outside their ecological niche. Our study thus identifies major demographic and functional determinants of species' niches and geographic distributions. It highlights that the inference of ecological niches from geographical distributions is most problematic for poorly dispersed and highly persistent species. We conclude that the direct quantification of ecological niches from demographic responses to environmental variation is a crucial step toward a better predictive understanding of biodiversity dynamics under environmental change.


Assuntos
Ecossistema , Proteaceae/crescimento & desenvolvimento , Biodiversidade , Demografia , Proteaceae/classificação , África do Sul
5.
New Phytol ; 228(1): 15-23, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33448428

RESUMO

Process-based vegetation models attempt to represent the wide range of trait variation in biomes by grouping ecologically similar species into plant functional types (PFTs). This approach has been successful in representing many aspects of plant physiology and biophysics but struggles to capture biogeographic history and ecological dynamics that determine biome boundaries and plant distributions. Grass-dominated ecosystems are broadly distributed across all vegetated continents and harbour large functional diversity, yet most Land Surface Models (LSMs) summarise grasses into two generic PFTs based primarily on differences between temperate C3 grasses and (sub)tropical C4 grasses. Incorporation of species-level trait variation is an active area of research to enhance the ecological realism of PFTs, which form the basis for vegetation processes and dynamics in LSMs. Using reported measurements, we developed grass functional trait values (physiological, structural, biochemical, anatomical, phenological, and disturbance-related) of dominant lineages to improve LSM representations. Our method is fundamentally different from previous efforts, as it uses phylogenetic relatedness to create lineage-based functional types (LFTs), situated between species-level trait data and PFT-level abstractions, thus providing a realistic representation of functional diversity and opening the door to the development of new vegetation models.


Assuntos
Ecossistema , Plantas , Filogenia , Dispersão Vegetal , Poaceae
6.
New Phytol ; 223(4): 1809-1819, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31177527

RESUMO

Phenotypic plasticity facilitates species persistence across resource gradients but may be limited in low-resource environments requiring resource conservation. We investigated the tradeoff between trait plasticity and resource conservatism across a biome boundary characterized by high turnover in nutrient and light availability, and whether this contributes to the maintenance of alternative stable states. Differences in plasticity were determined by comparing species' leaf and foliar nutritional trait responses to light, represented by leaf area index (LAI), and soil nutrient availability across forest-shrubland boundaries in South Africa. Although forest had higher LAI and soil nutrient availability than shrubland, forest species experienced greater resource variation. With increasing LAI and nutrient availability, forest species increased their leaf size, specific leaf area and leaf area/stem length, and decreased their foliar [N] and [K]. Although these responses are indicative of plasticity, shrubland species appeared to lack plasticity as evidenced by limited trait variation with environmental heterogeneity. Inhabiting diverse light environments imposed by forests probably selects for plasticity, whereas light-saturated, fire-prone, nutrient-poor environments that select for conservative leaf traits and below-ground investments compromise plasticity in shrubland species. This pattern suggests a tradeoff between trait plasticity and resource conservatism, which may support the stability of alternative vegetation states.


Assuntos
Adaptação Fisiológica , Conservação dos Recursos Naturais , Característica Quantitativa Herdável , Florestas , Luz , Fenótipo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação
9.
Proc Natl Acad Sci U S A ; 113(38): E5572-9, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27601649

RESUMO

Savannas first began to spread across Africa during the Miocene. A major hypothesis for explaining this vegetation change is the increase in C4 grasses, promoting fire. We investigated whether mammals could also have contributed to savanna expansion by using spinescence as a marker of mammal herbivory. Looking at the present distribution of 1,852 tree species, we established that spinescence is mainly associated with two functional types of mammals: large browsers and medium-sized mixed feeders. Using a dated phylogeny for the same tree species, we found that spinescence evolved at least 55 times. The diversification of spiny plants occurred long after the evolution of Afrotherian proboscideans and hyracoids. However, it is remarkably congruent with diversification of bovids, the lineage including the antelope that predominantly browse these plants today. Our findings suggest that herbivore-adapted savannas evolved several million years before fire-maintained savannas and probably, in different environmental conditions. Spiny savannas with abundant mammal herbivores occur in drier climates and on nutrient-rich soils, whereas fire-maintained savannas occur in wetter climates on nutrient-poor soils.


Assuntos
Ecossistema , Pradaria , Plantas/genética , Poaceae/crescimento & desenvolvimento , África , Animais , Incêndios , Herbivoria/genética , Mamíferos , Filogenia , Poaceae/genética , Solo
10.
New Phytol ; 218(4): 1419-1429, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29604213

RESUMO

Shade cast by trees, which suppresses grass growth, and fire fuelled by grass biomass, which prevents tree sapling establishment, are mutually exclusive and self-reinforcing drivers of biome distribution in savanna-forest mosaics. We investigated how shade depth, represented by canopy leaf area index (LAI), is generated by adult trees across savanna-forest boundaries and how a shade gradient filters tree functioning, and grass composition and biomass. Forest trees exerted greater shading through increased stem density and greater light interception per unit biomass. A critical transition at LAI c. 1.5 was linked to tree shifts from savanna to forest species, functional shifts from fire-tolerant to light-competitive species, and grass composition shifts from C4 to C3 pathways. A second transition to grass fuel loads too low to support fires, occurred at a lower canopy density (LAI > 0.5), accompanied by shifts in C4 subtype dominance. This pattern suggests that shade suppression of grass biomass is an essential first step for the maintenance of alternative stable states.


Assuntos
Adaptação Fisiológica , Incêndios , Florestas , Pradaria , Biomassa , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Característica Quantitativa Herdável , Análise de Regressão , Árvores/anatomia & histologia , Árvores/crescimento & desenvolvimento
11.
New Phytol ; 220(1): 10-24, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29806964

RESUMO

Tropical savannas have a ground cover dominated by C4 grasses, with fire and herbivory constraining woody cover below a rainfall-based potential. The savanna biome covers 50% of the African continent, encompassing diverse ecosystems that include densely wooded Miombo woodlands and Serengeti grasslands with scattered trees. African savannas provide water, grazing and browsing, food and fuel for tens of millions of people, and have a unique biodiversity that supports wildlife tourism. However, human impacts are causing widespread and accelerating degradation of savannas. The primary threats are land cover-change and transformation, landscape fragmentation that disrupts herbivore communities and fire regimes, climate change and rising atmospheric CO2 . The interactions among these threats are poorly understood, with unknown consequences for ecosystem health and human livelihoods. We argue that the unique combinations of plant functional traits characterizing the major floristic assemblages of African savannas make them differentially susceptible and resilient to anthropogenic drivers of ecosystem change. Research must address how this functional diversity among African savannas differentially influences their vulnerability to global change and elucidate the mechanisms responsible. This knowledge will permit appropriate management strategies to be developed to maintain ecosystem integrity, biodiversity and livelihoods.


Assuntos
Pradaria , Atividades Humanas , Fenômenos Fisiológicos Vegetais , Característica Quantitativa Herdável , África , Incêndios , Herbivoria/fisiologia , Humanos , Clima Tropical
13.
Glob Chang Biol ; 23(6): 2358-2369, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27732761

RESUMO

Increases in woody plant cover in savanna grassland environments have been reported on globally for over 50 years and are generally perceived as a threat to rangeland productivity and biodiversity. Despite this, few attempts have been made to estimate the extent of woodland increase at a national scale, principally due to technical constraints such as availability of appropriate remote sensing products. In this study, we aimed to measure the extent to which woodlands have replaced grasslands in South Africa's grassy biomes. We use multiseason Landsat data in conjunction with satellite L-band radar backscatter data to estimate the extent of woodlands and grasslands in 1990 and 2013. The method employed allows for a unique, nationwide measurement of transitions between grassland and woodland classes in recent decades. We estimate that during the 23-year study period, woodlands have replaced grasslands over ~57 000 km2 and conversely that grasslands have replaced woodlands over ~30 000 km2 , a net increase in the extent of woodland of ~27 000 km2 and an annual increase of 0.22%. The changes varied markedly across the country; areas receiving over 500 mm mean annual precipitation showed higher rates of woodland expansion than regions receiving <500 mm (0.31% yr-1 and 0.11% yr-1 , respectively). Protected areas with elephants showed clear loss of woodlands (-0.43% yr-1 ), while commercial rangelands and traditional rangelands showed increases in woodland extent (>0.19% yr-1 ). The woodland change map presented here provides a unique opportunity to test the numerous models of woody plant encroachment at a national/regional scale.


Assuntos
Conservação dos Recursos Naturais , Florestas , Poaceae , Ecossistema , Plantas , Dinâmica Populacional , África do Sul , Árvores
14.
New Phytol ; 211(3): 828-38, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27152877

RESUMO

Recent work suggests that hydraulic mechanisms, rather than cambium necrosis, may account for rapid post-fire tree mortality. We experimentally tested for xylem cavitation, as a result of exposure to high-vapour-deficit (D) heat plumes, and permanent xylem deformation, as a result of thermal softening of lignin, in two tree species differing in fire tolerance. We measured percentage loss of conductance (PLC) in distal branches that had been exposed to high-D heat plumes or immersed in hot water baths (high temperature, but not D). Results were compared with predictions from a parameterized hydraulic model. Physical damage to the xylem was examined microscopically. Both species suffered c. 80% PLC when exposed to a 100°C plume. However, at 70°C, the fire-sensitive Kiggelaria africana suffered lower PLC (49%) than the fire-resistant Eucalytpus cladocalyx (80%). Model simulations suggested that differences in PLC between species were a result of greater hydraulic segmentation in E. cladocalyx. Kiggelaria africana suffered considerable PLC (59%), as a result of heat-induced xylem deformation, in the water bath treatments, but E. cladocalyx did not. We suggest that a suite of 'pyrohydraulic' traits, including hydraulic segmentation and heat sensitivity of the xylem, may help to explain why some tree species experience rapid post-fire mortality after low-intensity fires and others do not.


Assuntos
Temperatura Alta , Árvores/fisiologia , Xilema/fisiologia , Análise de Variância , Simulação por Computador , Eucalyptus/fisiologia , Modelos Biológicos , Folhas de Planta/fisiologia , Fatores de Tempo , Xilema/ultraestrutura
15.
New Phytol ; 207(4): 1052-60, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25856385

RESUMO

Contrasting fire regimes maintain patch mosaics of savanna, thicket and forest biomes in many African subtropical landscapes. Species dominating each biome are thus expected to display distinct fire-related traits, commonly thought to be bark related. Recent Australian savanna research suggests that bud position, not bark protection alone, determines fire resilience via resprouting. We tested first how bud position influences resprouting ability in 17 tree species. We then compared the effect of both bark-related protection and bud position on the distribution of 63 tree species in 253 transects in all three biomes. Tree species with buds positioned deep under bark had a higher proportion of post-fire aboveground shoot resprouting. Species with low bud protection occurred in fire-prone biomes only if they could root-sucker. The effect of bud protection was supported by a good relationship between species bud protection and distribution across a gradient of fire frequency. Bud protection and high bark production are required to survive frequent fires in savanna. Forests are fire refugia hosting species with little or no bud protection and thin bark. Root-suckering species occur in the three biomes, suggesting that fire is not the only factor filtering this functional type.


Assuntos
Flores/fisiologia , Florestas , Pradaria , Característica Quantitativa Herdável , Incêndios , Geografia , Casca de Planta/fisiologia , África do Sul , Especificidade da Espécie , Árvores
16.
New Phytol ; 201(3): 908-915, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24400901

RESUMO

The dominant vegetation over much of the global land surface is not predetermined by contemporary climate, but also influenced by past environmental conditions. This confounds attempts to predict current and future biome distributions, because even a perfect model would project multiple possible biomes without knowledge of the historical vegetation state. Here we compare the distribution of tree- and grass-dominated biomes across Africa simulated using a dynamic global vegetation model (DGVM). We explicitly evaluate where and under what conditions multiple stable biome states are possible for current and projected future climates. Our simulation results show that multiple stable biomes states are possible for vast areas of tropical and subtropical Africa under current conditions. Widespread loss of the potential for multiple stable biomes states is projected in the 21st Century, driven by increasing atmospheric CO2 . Many sites where currently both tree-dominated and grass-dominated biomes are possible become deterministically tree-dominated. Regions with multiple stable biome states are widespread and require consideration when attempting to predict future vegetation changes. Testing for behaviour characteristic of systems with multiple stable equilibria, such as hysteresis and dependence on historical conditions, and the resulting uncertainty in simulated vegetation, will lead to improved projections of global change impacts.


Assuntos
Atmosfera/química , Biota , Dióxido de Carbono/análise , África , Simulação por Computador , Poaceae/fisiologia , Chuva , Fatores de Tempo , Árvores/fisiologia
17.
New Phytol ; 204(1): 201-214, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25039765

RESUMO

The origin of fire-adapted lineages is a long-standing question in ecology. Although phylogeny can provide a significant contribution to the ongoing debate, its use has been precluded by the lack of comprehensive DNA data. Here, we focus on the 'underground trees' (=geoxyles) of southern Africa, one of the most distinctive growth forms characteristic of fire-prone savannas. We placed geoxyles within the most comprehensive dated phylogeny for the regional flora comprising over 1400 woody species. Using this phylogeny, we tested whether African geoxyles evolved concomitantly with those of the South American cerrado and used their phylogenetic position to date the appearance of humid savannas. We found multiple independent origins of the geoxyle life-form mostly from the Pliocene, a period consistent with the origin of cerrado, with the majority of divergences occurring within the last 2 million yr. When contrasted with their tree relatives, geoxyles occur in regions characterized by higher rainfall and greater fire frequency. Our results indicate that the geoxylic growth form may have evolved in response to the interactive effects of frequent fires and high precipitation. As such, geoxyles may be regarded as markers of fire-maintained savannas occurring in climates suitable for forests.


Assuntos
Incêndios , Florestas , Pradaria , Adaptação Biológica , África , Biodiversidade , Evolução Biológica , Brasil , Ecossistema , Filogenia
18.
Am J Bot ; 101(2): 300-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24509796

RESUMO

PREMISE OF THE STUDY: The radiation of a lineage and its rise to ecological dominance are distinct phenomena and driven by different processes. For example, paleoecological data has been used to show that the Cretaceous angiosperm radiation did not coincide with their rise to dominance. Using a phylogenetic approach, we here explored the evolution of C4 grasses and evaluated whether the diversification of this group and its rise to ecological dominance in the late Miocene were decoupled. METHODS: We assembled a matrix including 675 grass species of the PACMAD clade and 2784 characters (ITS and ndhF) to run a molecular dating analysis using three fossils as reference calibrations. We coded species as C3 vs. C4 and reconstructed ancestral states under maximum likelihood. We used the program BiSSE to test whether rates of diversification are correlated with photosynthetic pathway and whether the radiation of C4 lineages preceded or coincided with their rise to ecological dominance from ∼10 Ma. KEY RESULTS: C4 grass lineages first originated around 35 Ma at the time of the Eocene-Oligocene transition. Accelerated diversification of C4 lineages did not coincide with their rise to ecological dominance. CONCLUSIONS: C4-dominated grasslands have expanded only since the Late Miocene and Pliocene. The initial diversification of their biotic elements can be tracked back as far as the Eocene-Oligocene transition. We suggest that shifts in taxonomic diversification and ecological dominance were stimulated by different factors, as in the case of the early angiosperms in the Cretaceous.


Assuntos
Evolução Biológica , Ecossistema , Variação Genética , Fotossíntese/genética , Filogenia , Dispersão Vegetal , Poaceae/genética , Ecologia , Fósseis
19.
Trends Ecol Evol ; 39(1): 1-4, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37845119

RESUMO

Afforesting grassy systems for carbon gain using flammable plantation trees could shift the fire regime from lower intensity grass-fuelled fires to high-intensity crown fires. Future changes in climate will worsen this. We highlight the fire risk of trees planted for carbon and costs of fire protection using African examples.


Assuntos
Incêndios , Árvores , Carbono , Previsões , Ecossistema
20.
Trends Ecol Evol ; 39(4): 359-367, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38129213

RESUMO

Mitigating climate change while safeguarding biodiversity and livelihoods is a major challenge. However, rampant afforestation threatens biodiversity and livelihoods, with questionable benefits to carbon storage. The narrative of landscape degradation is often applied without considering the history of the landscape. While some landscapes are undoubtedly deforested, others existed in open or mosaic states before human intervention, or have been deliberately maintained as such. In psychology, a 'fundamental attribution error' is made when characteristics are attributed without consideration of context or circumstances. We apply this concept to landscapes, and then propose a process that avoids attribution errors by testing a null hypothesis regarding past forest extent, using palaeoecology and other long-term data, alongside ecological and stakeholder knowledge.


Assuntos
Carbono , Árvores , Humanos , Conservação dos Recursos Naturais , Florestas , Biodiversidade , Ecossistema
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa